




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、下列说法中不正确的是()A.任意两个等边三角形相似 B.有一个锐角是40°的两个直角三角形相似C.有一个角是30°的两个等腰三角形相似 D.任意两个正方形相似2、如图,以点O为位似中心,把△ABC放大为原图形的2倍得到,以下说法中错误的是(
)A. B.点C,O,在同一直线上C. D.3、生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下与全身的高度比值接近0.618,可以增加视觉美感,若图中为2米,则约为(
)A.1.24米 B.1.38米 C.1.42米 D.1.62米4、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,105、如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则相同的视图是(
)A. B.C. D.6、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()A. B.C. D.二、多选题(6小题,每小题2分,共计12分)1、等腰三角形三边长分别为a,b,3,且a,b是关于x的一元二次方程x2﹣8x﹣1+m=0的两根,则m的值为()A.15 B.16 C.17 D.182、如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,以下结论正确的有(
)A.四边形CFHE是菱形 B.EC平分∠DCHC.线段BF的取值范围为3≤BF≤4 D.当点H与点A重合时,EF=3、如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论,正确的有(
).A. B.C. D.4、下列方程中,是一元二次方程的是()A. B. C. D.5、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论,其中正确的结论是()A.AC=FG B.S△FAB:S四边形CBFG=1:2 C.∠ABC=∠ABF D.AD2=FQ•AC6、如图,将绕正方形ABCD的顶点A顺时针旋转90°得,连结EF交AB于H,则下列结论正确的是(
)A.AE⊥AF B.EF∶AF=∶1C.AF2=FH·FE D.FB∶FC=HB∶EC第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、小明的身高为1.6,他在阳光下的影长为2,此时他旁边的旗杆的影长为15,则旗杆的高度为_______.2、如图,已知DC为∠ACB的平分线,DE∥BC.若AD=8,BD=10,BC=15,求EC的长=_____.3、中国“一带一路”倡议给沿线国家带来很大的经济效益.若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为______________.4、在数学活动课上,老师带领数学小组测量大树的高度.如图,数学小组发现大树离教学楼有5m,高1.4m的竹竿在水平地面的影子长1m,此时大树的影子有一部分映在地面上,还有一部分映在教学楼的墙上,墙上的影子离为2m,那么这棵大树高___________m.5、如图,点E是菱形ABCD边AB的中点,点F为边AD上一动点,连接EF,将△AEF沿直线EF折叠得到△A'EF,连接A'D,A'C.已知BC=4,∠B=120°,当△A'CD为直角三角形时,线段AF的长为______.6、设分别为一元二次方程的两个实数根,则____.7、在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是_____.8、如图,D是的边BC上一点,,,.如果的面积为15,那么的面积为______.四、解答题(6小题,每小题10分,共计60分)1、如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.
2、已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.3、已知==,求的值.4、(1)计算:(2)解方程:2(x﹣3)2=505、勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积、、之间的数量关系是(
).(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积、、之间的数量关系是(
),请说明理由.(3)如图4,在四边形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD、BC为边向四边形外作正方形,其面积分别为、、、,则、、、之间的数量关系式为(),请说明理由.6、如图,在平面直角坐标系中,△ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO=2AO.(1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PD⊥x轴,垂足为D,PD与直线AB交于点Q,设△CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当△MAB为直角三角形时,直接写出m的值.-参考答案-一、单选题1、C【解析】【分析】直接利用相似图形的性质分别分析得出答案.【详解】A.任意两个等边三角形相似,说法正确;B.有一个锐角是40°的两个直角三角形相似,说法正确;C.有一个角是30°的两个等腰三角形相似,30°有可能是顶角或底角,故说法错误;D.任意两个正方形相似,说法正确.故选:C.【考点】本题主要考查了图形的相似,正确把握相似图形的判定方法是解题关键.2、C【解析】【分析】根据位似图形的性质进行判断即可得.【详解】解:以点为位似中心,把放大为原图形的2倍得到,、点在同一直线上、、,,即选项A、B、D说法正确,选项C说法错误,故选:C.【考点】本题考查了位似图形,熟练掌握位似图形的性质是解题关键.3、A【解析】【分析】根据a:b≈0.618,且b=2即可求解.【详解】解:由题意可知,a:b≈0.618,代入b=2,∴a≈2×0.618=1.236≈1.24.故答案为:A【考点】本题考查了黄金分割比的定义,根据题中所给信息即可求解,本题属于基础题.4、D【解析】【分析】先把x2+2x=5(x﹣2)化简,然后根据一元二次方程的一般形式即可得到a、b、c的值.【详解】解:x2+2x=5(x﹣2),x2+2x=5x﹣10,x2+2x﹣5x+10=0,x2﹣3x+10=0,则a=1,b=﹣3,c=10,故选:D.【考点】此题主要考查了一元二次方程化为一般形式,熟练掌握一元二次方程的一般形式是解题的关键.5、B【解析】【分析】判断出组合体的左视图、主视图及俯视图,即可作出判断.【详解】解:几何体的左视图和主视图是相同的,故选:B.【考点】本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.6、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选A.【考点】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.二、多选题1、BC【解析】【分析】分3为底边长或腰长两种情况考虑:当3为底时,由a=b及a+b=8即可求出a、b的值,利用三角形的三边关系确定此种情况存在,再利用根与系数的关系即可求得的值;当3为腰时,则a、b中有一个为3,a+b=8即可求出b,再利用根与系数的关系即可求得的值.【详解】解:当3为腰时,此时a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此时方程为x2﹣8x+15=0,解得x1=3,x2=5;当3为底时,此时a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此时方程为x2﹣8x+16=0,解得x1=x2=4;综上所述,m的值为16或17.故答案为:BC.【考点】本题考查了一元二次方程根与系数的关系,等腰三角形的定义,分3为底边长或腰长两种情况讨论是解题的关键.2、ACD【解析】【分析】先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明即可判断出A正确;根据菱形的对角线平分一组对角可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,即可判断出B错误;点H与点A重合时,设BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,即可判断出C正确;过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,即可判断出D正确.【详解】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,故A正确;∵四边形CFHE是菱形,∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,故B错误;点H与点A重合时,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故C正确;如图,过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得,EF=,故D正确;故选ACD.【考点】本题考查了菱形的判定和性质,矩形的性质,翻折的性质,勾股定理,掌握知识点是解题关键.3、AC【解析】【分析】由中线BE和中线CD得DE是△ABC的中位线,由中位线的性质判断A,B;由中位线得证△DOE∽△COB,从而判断C;求得△ODE与△ABC的面积关系,由中线CD得△ADC和△ABC的面积关系,从而判断D.【详解】解:∵BE和CD是△ABC的中线,∴DE是△ABC的中位线,点O是△ABC的重心,∴DE:BC=1:2,故选项A正确,符合题意;AD:AB=1:2,DE∥BC,∴∠OED=∠OBC,∠ODE=∠OCB,∴△OED∽△OBC,∴,故选项B错误,不符合题意;∴OE:OB=ED:BC=1:2,∴AD:AB=OE:OB,故选项C正确,符合题意;∵CD是△ABC的中线,∴,∵OE:OB=OD:OC=1:2∴OC:DC=2:3∴,∴∴,故选项D错误,不符合题意;故答案为:A、C.【考点】此题考查了中位线的性质,涉及了比例线段和相似三角形的性质,熟练掌握相关基本性质是解题的关键.4、BCD【解析】【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A
,分母中含有未知数,是分式方程;
B
x2=x+1,是一元二次方程;C
7x2+3=0,是一元二次方程;
D
是一元二次方程.故选:BCD.【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.5、ABCD【解析】【分析】根据正方形的性质及垂直的定义证明△CAD≌△GFA,即可判断A选项;证明四边形CBFG是矩形,由此判断B选项;根据矩形的性质及等腰直角三角形的性质即可判断C选项;证明△CAD∽△EFQ,即可判断D选项.【详解】解:∵四边形ADEF为正方形,∴,∴,∵FG⊥CA,∴,∴,∴,∴△CAD≌△GFA,∴AC=FG,故A选项正确;∵,∴GF∥BC,∵CB=CA,CA=GF,∴GF=BC,∴四边形CBFG是平行四边形,∵,∴四边形CBFG是矩形,∴S△FAB:S四边形CBFG=1:2,故B选项正确;∵四边形CBFG是矩形,∴,∵CB=CA,∠ACB=90°,∴,∴,故C选项正确;∵四边形ADEF为正方形,∴,AD=EF,∴,∵四边形CBFG是矩形,∴,∴,∴,∵,∴,∵,∴△CAD∽△EFQ,∴,∵AD=EF,∴AD2=FQ•AC,故D选项正确;故选:ABCD.【考点】此题考查矩形的判定及性质,等腰直角三角形的性质,正方形的性质,全等三角形的判定及性质,相似三角形的判定及性质,熟记各知识点并熟练应用解决问题是解题的关键.6、ABD【解析】【分析】由旋转得到,进而可得,根据等腰直角三角形的性质以及勾股定理可得EF∶AF=∶1,根据相似三角对应边的比等于相似比可得FB∶FC=HB∶EC,而根据题意无法证明AF2=FH·FE,由此即可求得答案.【详解】解:∵四边形ABCD是正方形,∴,,∵旋转,∴,,,∴,即.,故A正确;是等腰直角三角形,,,(舍负),∴,故B正确;,,,故D正确.与不相似,∴无法证得,即无法证得,故C不正确.故选:ABD.【考点】本题考查了正方形的性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等相关知识,熟练掌握相似三角形的判定与性质是解决本题的关键.三、填空题1、12【解析】【分析】设这根旗杆的高度为xm,利用某一时刻物体的高度与它的影长的比相等得到,然后利用比例性质求x即可.【详解】设这根旗杆的高度为xm,根据题意得解得x=12(m),即这根旗杆的高度为12m.故答案为12.【考点】本题考查了相似三角形的应用:利用影长测量物体的高度;利用相似测量河的宽度(测量距离);借助标杆或直尺测量物体的高度.2、【解析】【分析】先由角平分线的定义及平行线的性质求得∠EDC=∠ECD,从而EC=DE;再DE∥BC,证得△ADE∽△ABC,然后根据相似三角形的性质列出比例式,求得DE的长,即为EC的长.【详解】解:∵DC为∠ACB的平分线∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案为:【考点】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定及相似三角形的判定与性质,熟练掌握相关性质与定理是解题的关键.3、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴该地区人均收入增长率为20%.故本题答案应为:20%.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.4、9【解析】【分析】根据同一时刻影长与物高成比例,先求出CE,再求AB即可.【详解】解:延长AD交BC延长线于E,根据同一时刻影长与物高成比例可得CE:CD=1:1.4,∵CD=2m,∴CE=m,∴BE=BC+CE=5+=m,∴BE:AB=1:1.4,∴AB=9m.故答案为:9.【考点】本题考查平行投影问题,掌握平行摄影的原理是同一时刻影长与物高成比例是解题关键.5、2或【解析】【分析】分当时和当时两种情况讨论求解即可.【详解】解:如图1所示,当时,取CD中点H,连接,∴,∵四边形ABCD是菱形,E为AB中点,∴,∠A=180°-∠B=60°,,由折叠的性质可知,,∴,连接EH,∵,∴四边形AEHD是平行四边形,∴,,∵由三角形三边的关系可知,当点不在线段EH上时,必有,这与矛盾,∴E、、H三点共线,∴,∴△AEF为等边三角形,∴;如图2所示,当时,连接BD,ED,过点F作FG⊥AB于G,∵∠ABC=120°,四边形ABCD是菱形,∴AB=AD,∠A=60°,∴△ABD是等边三角形,∵E是AB中点,∴DE⊥AB,∴∠ADE=30°,∴∠EDC=90°,∴此时三点共线,由翻折的性质可得,∵FG⊥AE,∠A=60°,∠AEF=45°,∴∠AFG=30°,∠GFE=45°,∴AF=2AG,EG=FG,∴,∵,∴,∴,故答案为:2或.【考点】本题主要考查了菱形的性质,等边三角形的性质与判定,折叠的性质,三角形三边的关系,含30度角的直角三角形的性质,平行四边形的性质与判定,直角三角形斜边上的中线等等,利用分类讨论的思想求解是解题的关键.6、2020【解析】【分析】根据一元二次方程的解结合根与系数的关系即可得出m2+2m=2022,m+n=−2,将其代入m2+3m+n=m2+2m+(m+n)中即可求出结论.【详解】解:∵m,n分别为一元二次方程x2+2x−2022=0的两个实数根,∴m2+2m=2022,m+n=−2,∴m2+3m+n=m2+2m+(m+n)=2022+(−2)=2020.故答案为:2020.【考点】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系得出m2+2m=2022,m+n=−2是解题的关键.7、5【解析】【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为6,进行尝试,可确定、、为边的这样一组三角形满足条件.【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.【考点】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.8、5【解析】【分析】先证明△ACD∽△BCA,再根据相似三角形的性质得到:△ACD的面积:△ABC的面积为1:4,再结合△ABD的面积为15,然后求出△ACD的面积即可.【详解】∵,,∴,∵,,∴,∴的面积,故答案是:5.【考点】本题主要考查了相似三角形的判定和性质、掌握相似三角形的面积比等于相似比的平方是解答本题的关键.四、解答题1、(1)=;(2)证明见解析.【解析】【分析】(1)根据正方形的性质和相似三角形的判定定理,得△CEF∽△ADF,可得=,进而即可得到结论;(2)由AD∥CB,点E是BC的中点,得△EFC∽△DFA.CF:AF=EC:AD,由FG//AB,得CG:BG=CF:AF,进而即可得到结论.【详解】(1)∵,∴=.∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)∵AD∥CB,点E是BC的中点,∴△EFC∽△DFA.∴CF:AF=EC:AD=1:2,∵FG⊥BC,∴FG//AB,∴CG:BG=CF:AF=1:2,∴CG=BG.【考点】本题主要考查正方形的性质,相似三角形的判定和性质定理以及平行线分线段成比例定理,掌握相似三角形的对应边成比例,是解题的关键.2、△ABC是直角三角形,理由见解析【解析】【分析】根据,可以设=k,然后根据a+b+c=12,可以求得k的值,进而求得a、b、c的值,再根据勾股定理的逆定理,即可判断△ABC的形状.【详解】解:令=k,∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8,又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3,∴a=5,b=3,c=4,∵32+42=52,∴△ABC是直角三角形.【考点】本题考查因式分解的应用、勾股定理的逆定理,解答此类问题的关键是明确题意,求出a、b、c的值.3、-1【解析】【分析】设===k,则a+b=3k,b+c=4k,c+a=5k,把三式相加得到a+b+c=6k,再利用加减消元法可计算出a=2k,b=k,c=3k,然后把a=2k,b=k,c=3k代入中进行分式的化简求值即可.【详解】解:设===k,则a+b=3k,b+c=4k,c+a=5k,三式相加得a+b+c=6k①用①式分别减去上述三个式子,可得出解得a=2k,b=k,c=3k,所以==-1.【考点】本题考查了比例的性质,掌握设比法求值是解题关键.4、(1)﹣;(2)x=8或﹣2.【解析】【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用平方根的定义计算得出答案.【详解】(1)原式=2﹣3﹣(﹣1)=﹣1﹣+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影产业影视内容创作分析
- 在线支付市场竞争格局及未来展望分析
- 游戏行业发展趋势与盈利模式
- 电表过户协议书
- 夫妻自愿离婚协议书
- 债转股投资协议书
- 销售业务外包协议书
- 医养结合协议书
- 协议书 协商失败
- 焊机使用协议书
- 仁爱版九年级英语上册unit2topic1复习课市公开课一等奖省课获奖课件
- 北京市国内旅游合同书
- 公司品牌建设五年规划
- 第二单元 三国两晋南北朝的民族交融与隋唐统一多民族封建国家的发展 知识清单 高中历史统编版(2019)必修中外历史纲要上册
- 居室环境的清洁与消毒
- GB/T 39766-2021人类生物样本库管理规范
- GB/T 2900.50-2008电工术语发电、输电及配电通用术语
- GB/T 2518-2008连续热镀锌钢板及钢带
- GB/T 1689-2014硫化橡胶耐磨性能的测定(用阿克隆磨耗试验机)
- 第二讲国外教育评价的发展历程
- 中外管理思想史-课件
评论
0/150
提交评论