江西育华学校2026届九年级数学第一学期期末复习检测模拟试题含解析_第1页
江西育华学校2026届九年级数学第一学期期末复习检测模拟试题含解析_第2页
江西育华学校2026届九年级数学第一学期期末复习检测模拟试题含解析_第3页
江西育华学校2026届九年级数学第一学期期末复习检测模拟试题含解析_第4页
江西育华学校2026届九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西育华学校2026届九年级数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图所示是一个运算程序,若输入的值为﹣2,则输出的结果为()A.3 B.5 C.7 D.92.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)3.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.4.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.85.如图,平行四边形的顶点,在轴上,顶点在上,顶点在上,则平行四边形的面积是()A. B. C. D.6.下列方程中,是关于x的一元二次方程的是()A. B. C. D.7.在一幅长60cm、宽40cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.(60+2x)(40+2x)=2816B.(60+x)(40+x)=2816C.(60+2x)(40+x)=2816D.(60+x)(40+2x)=28168.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为()A. B.C. D.9.在△ABC中,点D、E分别在AB,AC上,DE∥BC,AD:DB=1:2,,则=(),A. B. C. D.10.下列说法错误的是()A.将数用科学记数法表示为B.的平方根为C.无限小数是无理数D.比更大,比更小二、填空题(每小题3分,共24分)11.如图,在△ABC中,点D、E分别在△ABC的两边AB、AC上,且DE∥BC,如果,,,那么线段BC的长是______.12.已知是关于的一元二次方程的两个实数根,则=____.13.已知反比例函数的图象经过点,则这个反比例函数的解析式是__________.14.将抛物线y=﹣2x2+1向左平移三个单位,再向下平移两个单位得到抛物线________;15.一个圆锥的底面圆的半径为2,母线长为4,则它的侧面积为______.16.如图,AB是⊙O的直径,AC是⊙O的切线,连结OC交⊙O于点D,连结BD,∠C=30°,则∠ABD的度数是_____°.17.方程的解是______________.18.如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为____.三、解答题(共66分)19.(10分)解方程:x2-2x-3=020.(6分)如图,以为直径作半圆,点是半圆弧的中点,点是上的一个动点(点不与点、重合),交于点,延长、交于点,过点作,垂足为.(1)求证:是的切线;(2)若的半径为1,当点运动到的三等分点时,求的长.21.(6分)(1)计算:(2)解不等式:22.(8分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,,摆动臂可绕点旋转,.(1)在旋转过程中①当、、三点在同一直线上时,求的长,②当、、三点为同一直角三角形的顶点时,求的长.(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,如图2,此时,,求的长.(3)若连接(2)中的,将(2)中的形状和大小保持不变,把绕点在平面内自由旋转,分别取、、的中点、、,连接、、、随着绕点在平面内自由旋转,的面积是否发生变化,若不变,请直接写出的面积;若变化,的面积是否存在最大与最小?若存在,请直接写出面积的最大值与最小值,(温馨提示)23.(8分)综合与探究如图,抛物线经过点、、,已知点,,且,点为抛物线上一点(异于).(1)求抛物线和直线的表达式.(2)若点是直线上方抛物线上的点,过点作,与交于点,垂足为.当时,求点的坐标.(3)若点为轴上一动点,是否存在点,使得由,,,四点组成的四边形为平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.24.(8分)如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且,那么的值是______.25.(10分)如图,在中,,以为直径作交于点.过点作,垂足为,且交的延长线于点.(1)求证:是的切线;(2)若,,求的长.26.(10分)如图,在的正方形网格中,网线的交点称为格点,点,,都是格点.已知每个小正方形的边长为1.(1)画出的外接圆,并直接写出的半径是多少.(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据图表列出算式,然后把x=-2代入算式进行计算即可得解.【详解】解:把x=﹣2代入得:1﹣2×(﹣2)=1+4=1.故选:B.此题考查代数式求值,解题关键在于掌握运算法则.2、C【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.3、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.4、D【分析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【详解】试题解析:设圆锥的底面半径为r圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是∴弧长即圆锥底面的周长是解得,r=4,∴底面圆的直径为1.故选:D.本题考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.5、D【分析】先过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,再根据反比例函数系数k的几何意义,求得△ABE的面积=△COD的面积相等=|k2|,△AOE的面积=△CBD的面积相等=|k1|,最后计算平行四边形的面积.【详解】解:过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,根据∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE与S△COD相等,又∵点C在的图象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四边形OABC的面积=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故选D.本题主要考查了反比例函数系数k的几何意义,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.6、C【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、a=0,故本选项错误;B、有两个未知数,故本选项错误;C、本选项正确;D、含有分式,不是整式方程,故本选项错误;故选:C.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.7、A【解析】根据题意可知,挂画的长和宽分别为(60+2x)cm和(40+2x)cm,据此可列出方程(60+2x)(40+2x)=2816【详解】若设金色纸边的宽为xcm,则挂画的长和宽分别为(60+2x)cm和(40+2x)cm,可列方程(60+2x)(40+2x)=2816故答案为A.本题考查一元二次方程的应用,找出题中的等量关系是解题关键.8、D【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有人,买鸡的钱数为,根据题意,得:.本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.9、A【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:1.【详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:1.故选:A.本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10、C【分析】根据科学记数法的表示方法、平方根的定义、无理数的定义及实数比较大小的方法,进行逐项判断即可.【详解】A.65800000=6.58×107,故本选项正确;B.9的平方根为:,故本选项正确;C.无限不循环小数是无理数,而无限小数包含无限循环小数和无限不循环小数,故本选项错误;D.,因为,所以,即,故本选项正确.故选:C.本题考查科学记数法、平方根、无理数的概念及实数比较大小,明确各定义和方法即可,难度不大.二、填空题(每小题3分,共24分)11、;【分析】根据DE∥BC可得,再由相似三角形性质列比例式即可求解.【详解】解:,,,又∵,,,,解得:故答案为:.本题主要考查了平行线分线段成比例定理的应用,找准对应线段是解题的关键.12、-3【分析】欲求的值,根据一元二次方程根与系数的关系,求得两根的和与积,代入数值计算即可.【详解】解:根据题意x1+x2=2,x1•x2=-4,===-3.故答案为:-3.本题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是经常使用的一种解题方法.13、【分析】把点,代入求解即可.【详解】解:由于反比例函数的图象经过点,∴把点,代入中,解得k=6,所以函数解析式为:故答案为:本题考查待定系数法解函数解析式,掌握待定系数法的解题步骤正确计算是关键.14、【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键.15、8π【解析】圆锥的侧面积=底面周长×母线长÷1.【详解】解:底面半径为1,则底面周长=4π,圆锥的侧面积=×4π×4=8π,

故答案为:8π.本题利用了圆的周长公式和扇形面积公式求解,解题的关键是了解圆锥的侧面积的计算方法,难度不大.16、30°【分析】根据切线的性质求出∠OAC,结合∠C=30°可求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【详解】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=30°,∴∠AOC=90°﹣30°=60°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=AOC=30°,故答案为:30°.本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数.17、,【分析】根据题意先移项,再提取公因式,求出x的值即可.【详解】解:移项得,x(x-3)-x=0,提取公因式得,x(x-3-1)=0,即x(x-4)=0,解得,.故答案为:,.本题考查的是解一元二次方程-因式分解法,熟练利用因式分解法解一元二次方程是解答此题的关键.18、【分析】连接BE,由菱形和折叠的性质,得到AF=EF,∠C=∠A=60°,由cos∠C=,,得到△BCE是直角三角形,则,则△BEF也是直角三角形,设菱形的边长为,则EF=,,由勾股定理,求出FB=,则,即可得到cos∠EFB的值.【详解】解:如图,连接BE,∵四边形ABCD是菱形,∴AB=BC=CD,∠C=∠A=60°,AB∥DC,由折叠的性质,得AF=EF,则EF=ABFB,∵cos∠C=,∵点E是CD的中线,∴,∴,∴△BCE是直角三角形,即BE⊥CD,∴BE⊥AB,即△BEF是直角三角形.设BC=m,则BE=,在Rt△BEF中,EF=,由勾股定理,得:,∴,解得:,则,∴;故答案为:.本题考查了解直角三角形,特殊角的三角函数值,菱形的性质,折叠的性质,以及勾股定理的运用,解题的关键是正确作出辅助线,构造直角三角形,从而利用解直角三角形进行解题.三、解答题(共66分)19、,【解析】试题分析:用因式分解法解一元二次方程即可.试题解析:,或,,.点睛:解一元二次方程的常用方法:直接开方法,配方法,公式法,因式分解法.20、(1)详见解析;(2)或【分析】(1)连接,根据同弧所对的圆周角相等、直径所对的圆周角等于90°和等弧所对的弦相等可得:,,,从而证出≌,然后根据等腰三角形的性质即可求出∠ACF和∠ACO,从而求出∠OCF,即可证出结论;(2)先根据等腰直角三角形的性质求出AC、BC,再根据一个弧有两个三等分点分类讨论:情况一:当点为靠近点的三等分点时,根据三等分点即可求出,再根据锐角三角函数即可求出CE,从而求出AE;情况二:当点为靠近点的三等分点时,根据三等分点即可求出,从而求出AP,再推导出∠PDE=30°,设,用表示出DE、CE和AE的长,从而利用勾股定理列出方程即可求出,从而求出AE.【详解】(1)证明:连接∵为的直径∴∴根据同弧所对的圆周角相等可得,又∵是的中点∴∴在与中∴≌∴又∵∴平分∴∵,为的中点∴平分∴∴∴∴为的切线(2)证明:如图2∵的半径为1∴又∵,∴情况一:如图2当点为靠近点的三等分点时∵点是的三等分点∴∴在Rt△BCE中,∴情况二:如图3当点为靠近点的三等分点时∵点是的三等分点∴∴∴又∵∴又∵,∴∴∴∴设,则∴∴又∵∴即解出:或(应小于,故舍去)∴综上所述:或此题考查的是圆的基本性质、圆周角定理、切线的判定、等腰三角形的性质和解直角三角形,掌握同弧所对的圆周角相等、直径所对的圆周角是90°、切线的判定定理和用勾股定理和锐角三角函数解直角三角形是解决此题的关键.21、(1)4;(2).【分析】(1)先计算乘方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【详解】(1)原式=4;(2),,,.此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.22、(1)①或;②长为或;(2);(3)的面积会发生变化;存在,最大值为:,最小值为:【分析】(1)①分两种情形分别求解即可;

②显然不能为直角;当为直角时,根据计算即可;当为直角时,根据计算即可;(2)连接,,证得为等腰直角三角形,根据SAS可证得,根据条件可求得,根据勾股定理求得,即可求得答案;(3)根据三角形中位线定理,可证得是等腰直角三角形,求得,当取最大时,面积最大,当取最小时,面积最小,即可求得答案.【详解】(1)①,或;②显然不能为直角;当为直角时,,即,解得:;当为直角时,,即,;综上:长为或;(2)如图,连接,,根据旋转的性质得:为等腰直角三角形,∴,,,,,,,在和中,,,,又∵,,,;(3)发生变化,存在最大值和最小值,理由:如图,点P,M分别是,的中点,,,点N,P分别是,的中点,,,,,是等腰三角形,,,,,,,,,是等腰直角三角形;∴,当取最大时,面积最大,∴,当取最小时,面积最小,∴故:的面积发生变化,存在最大值和最小值,最大值为:,最小值为:.本题是几何变换综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,有一定的难度.23、(1),;(2)点的坐标为;(3)存在,点的坐标为或或【分析】(1),则OA=4OC=8,故点A(-8,0);△AOC∽△COB,则△ABC为直角三角形,则CO2=OA•OB,解得:OB=2,故点B(2,0);即可求解;

(2)PE=EF,即;即可求解;

(3)分BC是边、BC是对角线两种情况,分别求解即可.【详解】解:(1)∵,,∴.由点的坐标可知,故,,则点,点.设抛物线的表达式为,代入点的坐标,得,解得.故抛物线的表达式为.设直线的表达式为,代入点、的坐标,得,解得故直线的表达式为.(2)设点的坐标为,则点的坐标分别为,,.∵,∴,解得或(舍去),则,故当时,点的坐标为.(3)设点P(m,n),n=,点M(s,0),而点B、C的坐标分别为:(2,0)、(0,4);

①当BC是边时,

点B向左平移2个单位向上平移4个单位得到C,

同样点P(M)向左平移2个单位向上平移4个单位得到M(P),

即m-2=s,n+4=0或m+2=s,n-4=0,

解得:m=-6或±-3,

故点P的坐标为:(-6,4)或(-3,-4)或(--3,-4);

②当BC是对角线时,

由中点公式得:2=m+s,n=4,

故点P(-6,4);

综上,点P的坐标为:(-6,4)或(-3,-4)或(--3,-4).此题考查二次函数综合运用,一次函数的性质,平行四边形的性质,三角形相似,解题关键在于注意(3),要注意分类求解,避免遗漏.24、.【分析】由已知可得,从而可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论