




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
枣庄市2026届数学八年级第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.三个连续正整数的和小于14,这样的正整数有()A.2组 B.3组 C.4组 D.5组2.已知,则与的关系是()A. B. C. D.3.如图,是线段上的两点,.以点为圆心,长为半径画弧;再以点为圆心,长为半径画弧,两弧交于点,连结,则一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形4.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70° B.68° C.65° D.60°5.如图,在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B,C为圆心,大于线段BC长度一半的长为半径画圆弧.两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED.一定正确的是()A.①②③ B.①② C.①③ D.②③6.下列式子正确的是A. B. C. D.7.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.8.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定9.下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣2)3×(﹣2)3=﹣26C.(﹣5)4÷(﹣5)4=﹣52 D.(﹣4)0=110.如图,在正方形内,以为边作等边三角形,连接并延长交于,则下列结论不正确的是()A. B. C. D.11.已知,则()A. B. C. D.12.等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm二、填空题(每题4分,共24分)13.如图,已知,添加下列条件中的一个:①,②,③,其中不能确定≌△的是_____(只填序号).14.如果一个正数的两个平方根分别为3m+4和2﹣m,则这个数是__.15.如图,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,A1、B1的坐标分别为(3,1)、(a,b),则a+b的值为_____.16.如图所示,在中,,将点C沿折叠,使点C落在边D点,若,则______.17.若,则__________18.如图,将长方形沿对角线折叠,得到如图所示的图形,点的对应点是点,与交于点.若,,则的长是_____.三、解答题(共78分)19.(8分)如图,在四边形中,,点E为AB上一点,且DE平分平分求证:.20.(8分)如图(1)是一个长为,宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按照图(2)的形状拼成一个正方形.(1)请用两种不同的方法求图(2)中阴影部分的面积。方法1.________________;方法2:______________.请你写出下列三个式子:之间的等量关系___________;(2)根据(1)题中的等量关系,解决下列问题:已知,求;(3)实际上有许多恒等式可以用图形的面积来表示,如图(3),它表示的恒等式是___________.21.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A1B1C1D1,并在对称轴AC上找出一点P,使PD+PD1的值最小.22.(10分)如图,平面直角坐标系中,、,且、满足(1)求、两点的坐标;(2)过点的直线上有一点,连接、,,如图2,当点在第二象限时,交轴于点,延长交轴于点,设的长为,的长为,用含的式子表示;(3)在(2)的条件下,如图3,当点在第一象限时,过点作交于点,连接,若,,求的长.23.(10分)运用乘法公式计算(1)(2)24.(10分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.25.(12分)如图,在平面直角坐标系中,已知A(a,1),B(b,1),其中a,b满足|a+2|+(b﹣4)2=1.(1)填空:a=_____,b=_____;(2)如果在第三象限内有一点M(﹣3,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣3时,在y轴上有一点P,使得△ABP的面积与△ABM的面积相等,请求出点P的坐标.26.(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)
参考答案一、选择题(每题4分,共48分)1、B【分析】设最小的正整数为x,根据题意列出不等式,求出正整数解即可得到答案.【详解】解:设最小的正整数为x,由题意得:x+x+1+x+2<14,解得:,∴符合题意的x的值为1,2,3,即这样的正整数有3组,故选:B.【点睛】本题考查了一元一次不等式的应用,正确列出不等式是解题的关键.2、C【分析】将a分母有理化,然后求出a+b即可得出结论.【详解】解:∴∴故选C.【点睛】此题考查的是二次根式的化简,掌握分母有理化是解决此题的关键.3、B【分析】先根据题意确定AC、BC、AB的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC2=64,BC2=36,AB2=100,∴AC2+BC2=AB2∴一定是直角三角形.故选:B.【点睛】本题主要考查了勾股定理逆定理的应用,根据题意确定AC、BC、AB的长是解答本题的关键.4、A【分析】本题考查的是全等三角形的性质和三角形内和的应用,由全等三角形对应角相等可证得∠C=∠D,∠AED=∠B,从而得∠1=∠CED,由全等三角形对应边相等可得AB=AE,可得∠B=∠AEB,所以∠AED=∠AEB,从而求出∠AED的度数.【详解】∵△ABC≌△AED,∴∠C=∠D,∴∠CED=∠1=40°,∵△ABC≌△AED,∴∠B=∠AED,AB=AE,∴∠B=∠AEB,∴∠AED=∠AEB,∴∠AED=(180°-∠CED)÷2=70°.故选A.【点睛】本题主要考查了全等三角形的性质和三角形内和的应用,掌握全等三角形的性质和三角形内和为180°是解题的关键.5、B【分析】利用基本作图得到,则DE垂直平分BC,所以EB=EC,根据等腰三角形的性质得∠EBC=∠C,然后根据等角的余角相等得到∠A=∠EBA.【详解】由作法得,而D为BC的中点,所以DE垂直平分BC,则EB=EC,所以∠EBC=∠C,而,所以∠A=∠EBA,所以①②正确,故选:B.【点睛】本题主要考查了垂直平分线的性质及等腰三角形的性质,熟练掌握相关性质特点是解决本题的关键.6、A【解析】分析:根据=|a|分别对A、B、C进行判断;根据二次根式的定义可对D进行判断.详解:A、=|-7|=7,所以A选项正确;B、=|-7|=7,所以B选项错误;C、=7,所以C选项错误;D、没有意义,所以D选项错误.故选A.点睛:本题考查了二次根式的性质与化简:=|a|.也考查了二次根式的定义.7、B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.8、B【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.9、D【分析】分别根据负整数指数幂的运算法则,积的乘方运算法则,同底数幂的除法法则以及任何非零数的零次幂等于1对各个选项逐一判断即可.【详解】A.(﹣1)﹣3=﹣1,故本选项不合题意;B.(﹣2)3×(﹣2)3=[(﹣2)×(﹣2)]3=(22)3=26,故本选项不合题意;C.(﹣5)4÷(﹣5)4=1,故本选项不合题意;D.(﹣4)0=1,正确,故本选项符合题意.故选:D.【点睛】本题主要考查了同底数幂的除法,负整数指数幂,幂的乘方与积的乘方以及零指数幂,熟记幂的运算法则是解答本题的关键.10、D【分析】根据四边形ABCD是正方形,△EMC是等边三角形,得出∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,再计算角度即可;通过做辅助线MD,得出MA=MD,MD=MN,从而得出AM=MN.【详解】如图,连接DM,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠ADC=90°,∵△EMC是等边三角形,∴BM=BC=CM,∠EMC=∠MBC=∠MCB=60°,∴∠ABM=∠MCN=30°,∵BA=BM,MC=CD,∴∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,∴∠MAD=∠MDA=15°,故A正确;∴MA=MD,∴∠DMN=∠MAD+∠ADM=30°,∴∠CMN=∠CMD-∠DMN=45°,故B正确;∵∠MDN=∠AND=75°∴MD=MN∴AM=MN,故C正确;∵∠CMN=45°,∠MCN=30°,∴,故D错误,故选D.【点睛】本题考正方形的性质、等边三角形的性质等知识,灵活应用正方形以及等边三角形的性质,通过计算角度得出等腰三角形是关键.11、C【分析】根据同底数幂的乘法、幂的乘方,即可解答.【详解】解:,故选:C.【点睛】本题考查了同底数幂的乘法、幂的乘方,解决本题的关键是熟记同底数幂的乘法、幂的乘方.12、B【分析】题中没有指明哪个是底哪个腰,故应该分两种情况进行分析,注意利用三角形三边关系进行检验.【详解】当7cm为腰时,周长=7+7+3=17cm;当3cm为腰时,因为3+3<7cm,所以不能构成三角形;故三角形的周长是17cm.故选B.二、填空题(每题4分,共24分)13、②.【分析】一般三角形全等的判定方法有SSS,SAS,AAS,ASA,据此可逐个对比求解.【详解】∵已知,且∴若添加①,则可由判定≌;若添加②,则属于边边角的顺序,不能判定≌;若添加③,则属于边角边的顺序,可以判定≌.故答案为②.【点睛】本题考查全等三角形的几种基本判定方法,只要判定方法掌握得牢固,此题不难判断.14、1.【分析】根据正数的两个平方根互为相反数列方程求出m,再求出3m+4,然后平方计算即可得解.【详解】解:根据题意知3m+4+2﹣m=0,解得:m=﹣3,所以这个数为(3m+4)2=(﹣5)2=1,故答案为1.【点睛】本题主要考查了平方根的定义.解题的关键是明确一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15、1【分析】根据点A、A1的坐标得到平移的规律,即可求出点B平移后的点B1的坐标,由此得到答案.【详解】解:∵点A(2,0)先向上平移1个单位,再向右平移1个单位得到点A1(1,1),∴线段AB先向上平移1个单位,再向右平移1个单位得到线段A1B1,∴点B(0,1)先向上平移1个单位,再向右平移1个单位得到点B1,∴a=0+1=1,1+1=b,∴a+b=1+2=1.故答案为:1.【点睛】此题考查点平移的规律:纵坐标上加下减,横坐标左减右加,正确掌握规律是解题的关键.16、1【分析】根据折叠的性质可得∠EDA=90°,ED=EC=6cm,再根据直角三角形30°角所对边是斜边的一半可得AE,从而可得AC.【详解】解:根据折叠的性质DE=EC=6cm,∠EDB=∠C=90°,∴∠EDA=90°,∵∠A=30°,∴AE=2DE=12cm,∴AC=AE+EC=1cm,故答案为:1.【点睛】本题考查折叠的性质,含30°角的直角三角形.理解直角三角形斜边上的中线等于斜边的一半.17、5【分析】由题意根据非负数的性质求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴解得,将代入.故答案为:5.【点睛】本题考查非负数的性质,熟练掌握非负数的性质即“几个非负数的和为0时,这几个非负数都为0”是解题的关键.18、【详解】∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=4,AD∥BC,∴∠EAC=∠ACB,∵折叠,∴∠ACE=∠ACB,∴∠EAC=∠ACE,∴AE=CE,在Rt△DEC中,,设AE=x,∴,,故答案为:.【点睛】本题考查了翻折变换,矩形的性质的运用,平行线的性质的运用,等腰三角形的判定的运用,解答时灵活运用折叠的性质求解是关键.三、解答题(共78分)19、见解析【分析】延长CE交DA的延长线于点F,证明即可.【详解】证明:延长CE交DA的延长线于点F,∵CE平分,,,,,,平分,,,∴,.【点睛】本题考查了全等三角形的判定和性质,掌握判定方法是解题关键.20、(1)(m-n)2,,;(2)1;(3)【分析】(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释;(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2,(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)对a,b数值变换后的几何图解法,充分利用了数形结合的思想方法;(3)图③的面积计算也有两种方法,方法一是大长方形(长为的2m+n,宽为m+n)的面积是(2m+n)(m+n),方法二是组成大长方形的各个小长方形或正方形的面积和等于大长方形的面积,故而得到了代数恒等式.【详解】(1)方法1:阴影部分是一个正方形,边长为m-n,根据阴影部分正方形面积计算公式可得S阴=(m-n)2,方法2:大正方形边长为m+n,面积是:(m+n)2,四个长为m,宽为n的长方形的面积是4mn,阴影部分的面积是大正方形的面积减去四个长方形的面积S阴=(m+n)2-4mn,方法1与方法2均为求图②中阴影部分的面积,所以结果相等,即(m-n)2=(m+n)2-4mn,故答案为:(m-n)2,,;(2)(a+b)2-4ab=(a-b)2,(a+b)2=(a-b)2+4ab,=52-4×6=25-24=1∴(a+b)2=1;(3)计算图③的面积方法一是看作一个完整的长方形长为(m+n)宽为(2m+n),面积是:(m+n)(2m+n)方法二是:组成图③的各部分图形:2个边长为m的正方形的面积2m2,3个长为m,宽为n的长方形的面积即3mn,1个边长为n的正方形的面积n2,他们的面积和是:2m2+3mn+n2,方法一和方法二的计算结果相等即为:,故答案为:.【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力.21、(1)答案见解析;(2)答案见解析.【分析】(1)点D是点B关于直线AC的对称点,根据对称的性质确定点D后,连接AD和CD,即可得到四边形的另两条边.(2)将A,B,C,D四点向下平移5个单位,得到A1,B1,C1,D1,再依次连接A1,B1,C1,D1,即可得到四边形A1B1C1D1.连接DB1与AC相交的交点即为所求.【详解】(1)如图所示,四边形ABCD即为所求.(2)如图所示,四边形A1B1C1D1即为所求,点P位置如图所示.【点睛】本题主要考查图形的轴对称和图形的平移,熟悉掌握相关步骤是解题关键.22、(1)A(0,5)、B(5,0);(2);(3).【分析】(1)先根据非负数的性质求出a、b的值,进而可得结果;(2)先根据余角的性质证得∠DAO=∠CBD,进而可根据ASA证明△ADO≌△BEO,可得,进一步即可得出d和m的关系式;(3)过点作于,交CB延长线于点,根据四边形的内角和和平角的定义易得,从而可根据AAS证明△OAM≌△OBN,可得,可得CO是直角∠ACB的平分线,进一步即可推出,过点作于,由等腰直角三角形的性质可得,进而可得,然后即可根据SAS证明△AOF≌△OBK,可得,然后再利用等腰直角三角形的性质和角平分线的性质得出BC和AC的关系,进而可得结果.【详解】解:(1)∵,,,∴A(0,5)、B(5,0);(2)如图2,,,,,∴∠DAO=∠CBD,∵AO=BO=5,∠DOA=∠EOB=90°,∴△ADO≌△BEO(ASA),,;(3)过点作于,交CB延长线于点,如图4,,∵四边形的内角和为,,,,,,∴△OAM≌△OBN(AAS),,,,,,过点作于,,,,,,,,∴△AOF≌△OBK(SAS),,,过点作于,,,.【点睛】本题以平面直角坐标系为载体,主要考查了非负数的性质、全等三角形的判定和性质、角平分线的判定和性质、等腰直角三角形的判定和性质等知识,综合性强、难度较大,属于试卷的压轴题,正确添加辅助线、灵活应用全等三角形和等腰直角三角形的判定和性质是解题的关键.23、(1)1;(2)【分析】(1)利用完全平方公式计算即可;(2)利用平方差公式计算即可.【详解】(1)解:原式====1.(2)解:原式====【点睛】本题考查了平方差公式、完全平方公式,解题的关键是熟练掌握并运用公式.24、,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.试题解析:原式=·=当a=0时,原式==2.考点:分式的化简求值.25、(1).﹣2,4;(2).﹣3m;(3).(1,﹣3)或(1,3).【分析】(1)由绝对值和平方的非负性可求得a+2=1,b﹣4=1,即可求出a、b的值;(2)作MC⊥x轴交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市人民医院手术标本处理考核
- 2025安徽合肥师范学院辅导员招聘32人模拟试卷参考答案详解
- 2025第二季度重庆医科大学附属大学城医院临床医技科室人员招聘模拟试卷附答案详解
- 2025广东阳春市高校毕业生就业见习招募31人(第三期)模拟试卷附答案详解(模拟题)
- 重庆市人民医院外固定架应用技术专项考核
- 邯郸市人民医院重症感染预后评估考核
- 石家庄市人民医院疑难ABORh血型鉴定案例分析笔试试题
- 石家庄市中医院肛门直肠测压操作资格认证
- 张家口市中医院外周神经超声考核
- 沧州市中医院病理学术交流考核
- 医疗设备维护的智慧运营实践
- 2025-2030中国环丁砜行业市场现状分析及竞争格局与投资发展研究报告
- 一级注册消防工程师高频真题含答案2024
- 生产运营销售管理优化项目销售预测优化设计方案
- DB65╱T 3953-2016 反恐怖防范设置规范 商业场所
- 整形医院前台接待标准化流程与话术设计
- 完整的离婚协议书打印电子版(2025年版)
- 尿道狭窄的治疗与护理
- 2025年人教部编版小学三年级语文上册全册单元测试题及答案(全套)
- 某写字楼物业管理方案
- 迈克尔杰克逊课件
评论
0/150
提交评论