




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省三门峡市陕州区西张村镇初级中学数学九上期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.的值等于()A. B. C. D.2.把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式是()A. B.C. D.3.有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A.1 B.1 C. D.4.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°5.如图,点M在某反比例函数的图象上,且点M的横坐标为,若点和在该反比例函数的图象上,则与的大小关系为()A. B. C. D.无法确定6.遵义市脱贫攻坚工作中农村危房改造惠及百万余人,2008年以来全市累计实施农村危房改造40.37万户,其中的数据40.37万用科学记数法表示为()A. B. C. D.7.已知二次函数的图象如图所示,下列结论:①;②;③;④.其中正确的结论是()A.①② B.①③ C.①③④ D.①②③8.某水库大坝高米,背水坝的坡度为,则背水面的坡长为()A.40米 B.60米 C.米 D.米9.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:;;;,其中正确的是()A. B. C. D.10.方程的解是()A. B. C. D.11.用配方法解方程时,原方程可变形为()A. B. C. D.12.如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若S阴影=1则S1+S2=()A.4 B.5 C.6 D.8二、填空题(每题4分,共24分)13.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为_____.14.若一元二次方程的一个根是,则__________.15.分解因式:x3y﹣xy3=_____.16.请写出“两个根分别是2,-2”的一个一元二次方程:_______________17.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.18.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是_____.三、解答题(共78分)19.(8分)如图,已知均在上,请用无刻度的直尺作图.如图1,若点是的中点,试画出的平分线;如图2,若.试画出的平分线.20.(8分)如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.(1)求抛物线的解析式.(2)点是轴正半轴上的一个动点,过点作轴,交直线于点,交抛物线于点.①若点在线段上(不与点,重合),连接,求面积的最大值.②设的长为,是否存在,使以点,,,为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.21.(8分)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,求图中阴影部分的面积.22.(10分)抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)23.(10分)如图,已知是的直径,点在上,过点的直线与的延长线交于点,.求证:是的切线;求证:;点是弧的中点,交于点,若,求的值.24.(10分)已知,如图,在平面直角坐标系中,直线与轴交于点A,与轴交于点B,抛物线经过A、B两点,与轴的另一个交点为C.(1)直接写出点A和点B的坐标;(2)求抛物线的函数解析式;(3)D为直线AB下方抛物线上一动点;①连接DO交AB于点E,若DE:OE=3:4,求点D的坐标;②是否存在点D,使得∠DBA的度数恰好是∠BAC度数2倍,如果存在,求点D的坐标,如果不存在,说明理由.25.(12分)解方程(1)(2)26.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据特殊角的三角函数值求解.【详解】.
故选:B.本题考查了特殊角的三角函数值,解答本题的关键是熟记几个特殊角的三角函数值.2、D【分析】二次函数绕原点旋转,旋转后的抛物线顶点与原抛物线顶点关于原点中心对称,开口方向相反,将原解析式化为顶点式即可解答.【详解】把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式:故选:D本题考查的是二次函数的旋转,关键是掌握旋转的规律,二次函数的旋转,平移等一般都要先化为顶点式.3、B【分析】利用折叠的性质,即可求得BD的长与图3中AB的长,又由相似三角形的对应边成比例,即可求得BF的长,则由CF=BC﹣BF即可求得答案.【详解】解:如图2,根据题意得:BD=AB﹣AD=2.5﹣1.5=1,如图3,AB=AD﹣BD=1.5﹣1=0.5,∵BC∥DE,∴△ABF∽△ADE,∴,即,∴BF=0.5,∴CF=BC﹣BF=1.5﹣0.5=1.故选B.此题考查了折叠的性质与相似三角形的判定与性质.题目难度不大,注意数形结合思想的应用.4、D【解析】试题分析:∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,tanB=ACBC故选D.考点:1.直角三角形两锐角的关系;2.锐角三角函数定义.5、A【分析】反比例函数在第一象限的一支y随x的增大而减小,只需判断a与2a的大小便可得出答案.【详解】∵a<2a又∵反比例函数在第一象限的一支y随x的增大而减小∴故选:A.本题考查比较大小,需要用到反比例函数y与x的增减变化,本题直接读图即可得出.6、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:根据科学记数法的定义:40.37万=故选:B.此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.7、C【分析】由抛物线开口方向得到a>0,由抛物线的对称轴方程得到b=-2a,则可对①②进行判断;利用判别式的意义可对③进行判断;利用平方差公式得到(a+b)2-b2=(a+b-b)(a+b+b),然后把b=-2a代入可对④进行判断.【详解】∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=-=1,
∴b=-2a<0,所以①正确;
∴b+2a=0,所以②错误;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,所以③正确;
∵(a+b)2-b2=(a+b-b)(a+b+b)=a(a+2b)=a(a-4a)=-3a2<0,
∴(a+b)2<b2,所以④正确.
故选:C.考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.8、A【解析】坡面的垂直高度h和水平宽度l的比叫做坡度(或坡比),我们把斜坡面与水平面的夹角叫做坡角,若用α表示,可知坡度与坡角的关系式,tanα(坡度)=垂直距离÷水平距离,根据公式可得水平距离,依据勾股定理可得问题的答案.【详解】∵大坝高20米,背水坝的坡度为1:,
∴水平距离=20×=20米.
根据勾股定理可得背水面的坡长为40米.
故选A.本题考查解直角三角形的应用-坡度、坡角的有关知识,熟悉且会灵活应用坡度公式是解此题的关键.9、C【解析】试题解析:①和的底分别相等,高也相等,所以它们的面积也相等,故正确.②和的底分别相等,高也相等,所以它们的面积也相等,并不是倍的关系.故错误.③由于是的中点,所以和的相似比为,所以它们的面积之比为.故错误.④和的底相等,高和则是的关系,所以它们的面积之比为.故正确.综上所述,符合题意的有①和④.故选C.10、B【解析】按照系数化1、开平方的步骤求解即可.【详解】系数化1,得开平方,得故答案为B.此题主要考查一元二次方程的求解,熟练掌握,即可解题.11、B【分析】先将二次项系数化为1,将常数项移动到方程的右边,方程两边同时加上一次项系数的一半的平方,结合完全平方公式进行化简即可解题.【详解】故选:B.本题考查配方法解一元二次方程,其中涉及完全平方公式,是重要考点,难度较易,掌握相关知识是解题关键.12、D【分析】B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,从而求出S1和S2的值即可【详解】∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,,∵S阴影=1,∴S1=S2=4,即S1+S2=8,故选D本题主要考查反比例函数上的点向坐标轴作垂线围成的矩形面积问题,难度不大二、填空题(每题4分,共24分)13、1:1.【解析】试题分析:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:1.考点:相似三角形的性质.14、1【分析】将x=1代入一元二次方程,即可求得m的值,本题得以解决.【详解】解:∵一元二次方程有一个根为x=1,
∴11-6+m=0,
解得,m=1,
故答案为1.本题考查一元二次方程的解,解答本题的关键是明确题意,求出m的值.15、xy(x+y)(x﹣y).【解析】分析:首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.详解:x3y﹣xy3=xy(x2﹣y2)=xy(x+y)(x﹣y).点睛:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、【分析】可先分别写出解为2,-2的一元一次方程(此一元一次方程的等式右边为0),然后逆运用因式分解法即可.【详解】解:因为x+2=0的解为x=-2,x-2=0的解为x=2,所以的两个根分别是2,-2,可化为.故答案为:.本题考查一元二次方程的解,因式分解法解一元二次方程.因式分解法是令等式的一边为0,另一边分解为两个一次因式乘积的形式,这两个一次因式为0时的解为一元二次方程的两个解.而本题可先分别写出两个值为0时解为2和-2的一次因式,这两个一次因式的乘积即可作为一元二次方程等式的一边,等式的另外一边为0.17、1.【解析】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知,即,解得AM=1.∴小明的影长为1米.18、.【分析】直接利用概率求法,白球数量除以总数进而得出答案.【详解】∵一个不透明的盒子中有4个白球,3个黑球,2个红球,∴随机从盒子中摸出一个球,摸到白球的概率是:.故答案为:.此题主要考查了概率公式,正确掌握概率求法是解题关键.三、解答题(共78分)19、见解析;见解析【分析】(1)根据题意连接OD并延长交圆上一点E,连接BE即可;(2)根据题意连接AD与BC交与一点,连接此点和O,并延长交圆上一点E,连接BE即可.【详解】如图:BE即为所求;如图:BE即为所求;本题主要考查复杂作图、圆周角定理、垂径定理以及切线的性质的综合应用,解决问题的关键是掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.20、(1);(2)①;②存在,当时,以点,,,为顶点的四边形是平行四边形.【分析】(1)把,带入即可求得解析式;(2)先用含m的代数式表示点P、M的坐标,再根据三角形的面积公式求出∆PCM的面积和m的函数关系式,然后求出∆PCM的最大值;(3)由平行四边形的性质列出关于t的一元二次方程,解方程即可得到结论【详解】解:(1)∵抛物线过点、点,∴解得∴抛物线的解析式为.(2)∵抛物线与轴交于点,∴可知点坐标为.∴可设直线的解析式为.把点代人中,得,∴.∴直线的解析式为.①∵轴,∴.设,则,且.∴,∴.∴.∴当时,的面积最大,最大值为.②存在.由题可知,.∴当时,以点,,,为顶点的四边形是平行四边形.已知的长为,所以,.∴.∴当时,解得(不符合题意,舍去),;当时,,∴此方程无实数根.综上,当时,以点,,,为顶点的四边形是平行四边形.本题考查的是二次函数的性质,待定系数法求函数解析式、平行四边形的判定,正确求出二次函数解析式,利用配方法把一般式化成顶点式,求出函数的最值是解题的关键21、4πcm2【分析】由旋转知△A′BC′≌△ABC,两个三角形的面积S△A′BC′=S△ABC,将三角形△A′BC′旋转到三角形△ABC,变成一个扇面,阴影面积=大扇形A′BA面积-小扇形C′OC面积即可.【详解】解:∵∠BCA=90°,∠BAC=30°,AB=4,∴BC=2,∠CBC′=120°,∠A′BA=120°,由旋转知△A′BC′≌△ABC∴S△A′BC′=S△ABC,∴S阴影=S△A′BC′+S扇形ABA′-S扇形CBC′-S△ABC=S扇形ABA′-S扇形CBC′=×(42-22)=4π(cm2).本题考查阴影部分面积问题,关键利用顺时针旋转△A′C′B到△ACB,补上△A′C′B内部的阴影面积,使图形变成一个扇面,用扇形面积公式求出大扇形面积与小扇形面积.22、(1)①b=2;②△CBE面积的最大值为1,此时E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①将点B(2,0)代入y=﹣x2+x+b即可求b;②设E(m,﹣m2+m+2),求出BC的直线解析式为y=﹣x+2,和过点E与BC垂直的直线解析式为y=x﹣m2+2,求出两直线交点F,则EF最大时,△CBE面积的最大;(2)可求C(0,b),B(,0),设M(t,﹣t2+t+b),利用对角线互相平分的四边形是平行四边形,则分三种情况求解:①当CM和BD为平行四边形的对角线时,=,=0,解得b=﹣1+;②当BM和CD为平行四边形的对角线时,=,=,b无解;③当BC和MD为平行四边形的对角线时,=,=,解得b=或b=﹣(舍).【详解】解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,∵C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,解得:b=﹣1+或b=﹣1﹣(舍去),∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,解得:b=或b=﹣(舍);综上所述:b=﹣1+或b=.本题考查二次函数的综合;熟练掌握二次函数的图象及性质,熟练应用平行四边形的判定方法是解题的关键.23、(1)详见解析;(2)详见解析;(3)1.【分析】(1)根据圆周角定理,易得∠PCB+∠OCB=90,即OC⊥CP,故PC是⊙O的切线;
(2)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故;代入数据即可求得答案.【详解】,,又,,又是的直径,,,即,是的半径,是的切线;,,,又,,,;连接,点是的中点,∴,,,,,,,又是的直径,,,,,.此题主要考查圆的切线的判定及圆周角定理的运用和相似三角形的判定和性质的应用,证得是解题的关键.24、(1)A(-4,0)、B(0,-2);(2);(3)①(-1,3)或(-3,-2);②(-2,-3).【分析】(1)在中由求出对应的x的值,由x=0求出对应的y的值即可求得点A、B的坐标;(2)把(1)中所求点A、B的坐标代入中列出方程组,解方程组即可求得b、c的值,从而可得二次函数的解析式;(3)①如图,过点D作x轴的垂线交AB于点F,连接OD交AB于点E,由此易得△DFE∽OBE,这样设点D的坐标为,点F的坐标为,结合相似三角形的性质和DE:OE=3:4,即可列出关于m的方程,解方程求得m的值即可得到点D的坐标;②在y轴的正半轴上截取OH=OB,可得△ABH是等腰三角形,由此可得∠HAB=2∠BAC,若此时∠DAB=2∠BAC=∠HAB,则BD∥AH,再求出AH的解析式可得BD的解析式,由BD的解析式和抛物线的解析式联立构成方程组,解方程组即可求得点D的坐标.【详解】解:(1)在中,由可得:,解得:;由可得:,∴点A的坐标为(-4,0),点B的坐标为(0,-2);(2)把点A的坐标为(-4,0),点B的坐标为(0,-2)代入得:,解得:,∴抛物线的解析式为:;(3)①过点D作x轴的垂线交AB于点F,设点D,F,连接DO交AB于点E,△DFE∽OBE,因为DE:OE=3:4,所以FD:BO=3:4,即:FD=BO=,所以,解之得:m1=-1,m2=-3,∴D的坐标为(-1,3)或(-3,-2);②在y轴的正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年重庆进城考试试题及答案
- 农业机械维修工职业技能等级考试模拟试卷及答案(2025年)农机电气故障排除与
- 2025年铁路营业线施工安全培训试题+答案
- 安顺市2025年职业卫生技术服务专业技术人员考试(职业卫生检测)模拟题库及答案
- 2025年机械维修试题及答案
- 2025年高二物理上学期重点难点突破卷(二)
- 2025年高二物理上学期相对论基本假设与效应初探题
- 2025年高二物理上学期物理思想方法考查(一)
- 2025年气候变化对农业产量的影响研究
- 2025年高二物理上学期家庭小实验评估
- 2025中粮集团社会招聘7人笔试历年参考题库附带答案详解
- 2024年导游资格证考试-浙江省导游文化基础知识考试近5年真题集锦(频考类试题)带答案
- GB/T 4732.2-2024压力容器分析设计第2部分:材料
- 部编版《道德与法治》六年级上册第9课《知法守法 依法维权》教学课件
- 中国近现代史纲要(河北工业大学)智慧树知到答案2024年河北工业大学
- 劳务投标书技术标
- 多模式数据融合在金融预测中的应用
- 辽宁省大连市外研版七年级上册 专项 五选四 短文选句 模拟练习
- 物业客户投诉处理及技巧培训课件
- 纽约中央公园景观分析
- 三国志11全人物能力数值表
评论
0/150
提交评论