专项突破05代数式的概念与整式的加减(知识技巧点拨16种高频考察题型共48题)原卷版_第1页
专项突破05代数式的概念与整式的加减(知识技巧点拨16种高频考察题型共48题)原卷版_第2页
专项突破05代数式的概念与整式的加减(知识技巧点拨16种高频考察题型共48题)原卷版_第3页
专项突破05代数式的概念与整式的加减(知识技巧点拨16种高频考察题型共48题)原卷版_第4页
专项突破05代数式的概念与整式的加减(知识技巧点拨16种高频考察题型共48题)原卷版_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专项突破05代数式的概念与整式的加减(知识技巧点拨+16种高频考察题型共48题)TOC\o"12"\h\u知识梳理技巧点拨 2知识点梳理01:代数式 2知识点梳理02:列代数式 2知识点梳理03:代数式求值 3知识点梳理04:整式 3知识点梳理05:单项式 3知识点梳理06:多项式 3知识点梳理07:同类项 4知识点梳理08:合并同类项 4知识点梳理09:去括号法则 4知识点梳理10:添括号法则 5知识点梳理11:整式的加减运算法则 5优选题型考点讲练 5题型1代数式书写方法 5题型2已知字母的值,求代数式的值 6题型3已知式子的值,求代数式的值 7题型4程序流程图与代数式求值 7题型5用代数式表示数、图形的规律 8题型6已知同类项求指数中字母或代数式的值 9题型7合并同类项 10题型8整式的加减运算 11题型9整式的减中的化简求值 12题型10整式动减中的无关型问题 13题型11整式加减的应用 15题型12单项式规律题 17题型13将多项式按某个字母升幂(降幂)排列 18题型14数字类规律探索 19题型15图形类规律探索 20题型16带有字母的绝对值化简问题 22知识点梳理01:代数式代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.例如:ax+2b,﹣13,2b3,a+2等.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.注意:①不包括等于号(=)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈.②可以有绝对值.例如:|x|,|﹣2.25|等.知识点梳理02:列代数式(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.(2)列代数式五点注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.【规律方法】列代数式应该注意的四个问题1.在同一个式子或具体问题中,每一个字母只能代表一个量.2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.知识点梳理03:代数式求值(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.知识点梳理04:整式(1)概念:单项式和多项式统称为整式.他们都有次数,但是多项式没有系数,多项式的每一项是一个单项式,含有字母的项都有系数.(2)规律方法总结:①对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“﹣”将单项式连起来的就是多项式,不含“+”或“﹣”的整式绝对不是多项式,而单项式注重一个“积”字.②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.知识点梳理05:单项式(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.(2)单项式的系数、次数单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或﹣a这样的式子的系数是1或﹣1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.知识点梳理06:多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.知识点梳理07:同类项用运算符号把数或表示数的字母连结而成的式子叫做代数式.单独的一个数或字母也是代数式.【名师点拨】1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.知识点梳理08:合并同类项1.概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.【名师点拨】合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2)合并同类项,只把系数相加减,字母、指数不作运算.知识点梳理09:去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【名师点拨】(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“”号时,可以看作1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.知识点梳理10:添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“”号,括到括号里的各项都要改变符号.【名师点拨】(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:知识点梳理11:整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.【名师点拨】(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.题型1代数式书写方法1.(2425七年级上·上海宝山·期中)下列代数式中,符合代数式书写要求的有()(1)113x2y;(2)ab÷cA.1个 B.2个 C.3个 D.4个2.(2223七年级上·浙江宁波·期中)下列式子中,符合代数式书写要求的是(

)A.3b÷2 B.334b C.−a3.(2425七年级上·吉林·期中)下列书写∶①−1a;②223a2b;③5a2b3题型2已知字母的值,求代数式的值4.(2526七年级上·河北邯郸·阶段练习)根据所给的条件,求出各式的值:(1)若2a−3+b−22(2)已知a=3,b=2,且5.(2526七年级上·全国·期中)若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+a+b6.(2526七年级上·安徽亳州·阶段练习)数轴是一个非常重要的数学工具,通过数轴可以把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,是建立“数形结合思想”的基础.如图,以1cm为1个单位长度,用直尺画数轴,数轴上从左到右依次有A,B,C三点,且数轴上点A、点B和点C(1)若数轴上点A和点C这两点所表示的数互为相反数,则数轴上原点对着直尺上的刻度是,点B在数轴上所表示的数是________.(2)若点B在数轴上所表示的数是−1.5,分别求出点A、点(3)若数轴上A,B,C三点在数轴上所表示的数分别为a,b,c,当点C到原点的距离为2026时,求a−b+c的值.题型3已知式子的值,求代数式的值7.(2526七年级上·湖南长沙·阶段练习)已知a,b互为相反数,c,d互为倒数,数轴上表示数m的点与表示数−2的点距离为4.(1)若a−3+c+32=0(2)求5cd−m8.(2526七年级上·四川南充·阶段练习)定义abcd为二阶行列式,规定它的运算abcd法则为ad−bc,那么当9.(2526七年级上·黑龙江佳木斯·阶段练习)如果有理数a,b互为相反数,c,d互为倒数,m的绝对值为12,求m题型4程序流程图与代数式求值10.(2526七年级上·河北石家庄·阶段练习)如图是一个“数值转换机”的示意图.若x=−5,y=−3,则输出结果为.11.(2526七年级上·山东青岛·阶段练习)如图是一个“数值转换机”,若开始输入x的值为26,第1次输出的结果为27,则第2025次输出的结果是.12.(2023七年级上·河南漯河·竞赛)有一个数值转换器,原理如图所示,若开始输入x的值是3,可发现第1次输出的结果是10,第2次输出的结果是5,第3次输出的结果是16,依次继续下去…,第101次输出的结果是(

)A.8 B.4 C.2 D.1题型5用代数式表示数、图形的规律13.(2025七年级上·江苏·专题练习)如图,由若干根火柴棒拼成小金鱼的图形:(1)拼1条金鱼需要根火柴;(2)拼3条金鱼需要根火柴;(3)拼n条金鱼需要根火柴.14.(2526七年级上·江西上饶·阶段练习)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④后面的横线上写出相应的等式:①1=12;②1+3=22;③(2)请猜想1+3+5+7+9+…+19=;(3)请用上述规律计算:1+3+5+…+99.15.(2526七年级上·北京·阶段练习)观察下列各数,找出规律后填空:(1)−1,2,−4,8,−16,32,……,第10个数是_____.(2)1,−3,5,−7,…,第15个数是_____.(3)1,−4,7,−10,13,…,第100个数是_____.题型6已知同类项求指数中字母或代数式的值16.(2425七年级上·广东揭阳·期末)若关于x,y的单项式3x4ym+2与−217.(2425七年级上·福建厦门·期中)若单项式a2bn与−18.(2223七年级上·江苏苏州·期末)已知xa+by20与x10yb为同类项,数轴上两点A,(1)a=______,b=______,线段AB=______;(2)若数轴上有一点C,使得AC=32BC,点M为AB(3)有一动点G从点A出发,以3个单位每秒的速度向右方向运动,同时动点H从点B出发,以1个单位每秒的速度在数轴上作同方向运动,设运动时间为t秒(t<10),点D为线段GB的中点,点F为线段DH的中点,点E在线段GB上且GE=13GB,在G,H的运动过程中,求DE+DF题型7合并同类项19.(2526七年级上·山东青岛·阶段练习)小红做一道数学题:“两个多项式A,B,已知B为4x2−5x−6,试求A−B的值”时.小红误将A−B看成A+B(1)试求A−B的正确结果;(2)当x=−4时,求A−B的值.20.(2526七年级上·福建福州·阶段练习)一个点从数轴的原点开始,先向左移动4个单位到达A点,再向右移6个单位到达C点;接着将数轴折叠,使点A和点C重合,折点记为B;最后将数轴展开.(1)直接写出A,B,C三点所表示的数A______,B______,C______;(2)动点P从点C出发,以每秒0.2个单位长度向左运动;①求18秒后动点P与点B之间的距离;②动点Q,M分别以每秒0.6个单位长度和0.3个单位长度的速度从A,B两点与点P同时出发,同向而行.记Q与M两点之间的距离为QM,M与P两点之间的距离为MP.这三个点在运动过程中,是否存在3MP−QM为定值,若存在,请求出该值,若不存在,请说明理由.21.(2526七年级上·湖北武汉·阶段练习)已知a,b,c在数轴上的位置如图:(1)①用“<”或“>”填空:a−c0,b−a0;②填空:a−c=,|b−a|=(2)化简:b+2−(3)若a+b+c=0,且b与−2的距离和c与−2的距离相等,则a+b−c−(−3c−b)=.题型8整式的加减运算22.(2526七年级上·山东青岛·阶段练习)计算或化简求值:(1)(−4)×(−8)−(−5)×−7(2)−5(3)997(4)−3(5)先化简,再求值:4xy−x2+5xy−y223.(2324八年级上·全国·期末)已知A=3x−4xy+7y,B=−3x+2xy+y.(1)化简A−B;(2)当x+y=12,xy=−1,求(3)若A−B的值与y的取值无关,求A−B的值.24.(2425七年级上·河南驻马店·期末)已知A=3a2b−2ab2+abc,晓风错将“(1)计算B的表达式;(2)求正确的结果的表达式;(3)晓华说(2)中的结果的大小与c的取值无关,对吗?若a=18,题型9整式的减中的化简求值25.(2526七年级上·辽宁·阶段练习)如图1,是由两个圆柱体组成的瓶子,瓶内盛满水,两个圆柱体的底圆直径分别为2a和a,高分别为6和2.如图2的底圆直径分别为12(1)当a=10时,试求一共需要多少个图2这样的杯子.(2)直接回答当a=m时,一共需要多少个图2这样的杯子.26.(2526七年级上·全国·课后作业)在数学课上,王老师出示了这样一道题目:“当x=−3,y=−3.5时,求多项式x2+4xy+2y(1)请你说明小明的说法是正确的理由.(2)接着王老师又出示了一道题:“设a,b,c为常数,关于x,y的多项式M=ax2+bxy+cy2−3y−2,N=2x27.(2526七年级上·全国·课后作业)有这样一道题:当a=2024,b=−2025时,求多项式7a小明说:“本题中‘a=2024,b=−2025’是多余的条件.”小强马上反对说:“这不可能,多项式中含有a和b,不给出a,b的值,怎么能求出多项式的值呢?”你同意谁的观点?请说明理由.题型10整式动减中的无关型问题28.(2024七年级上·全国·专题练习)如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,①小长方形的较长边为(y−12)cm②阴影A的较短边和阴影B的较短边之和为(x−y+4)cm③若x为定值,则阴影A和阴影B的周长和为定值;④若y=20时,则阴影A的周长比阴影B的周长少8cm①③ B.②④ C.①④ D.①③④29.(2526七年级上·重庆·阶段练习)某家具厂设计一款新中式屏风,结构如下:屏风整体为长方形,其中包含3个形状、大小完全相同的“梅花”艺术造型.每个“梅花”造型是由1个正方形和4个半圆形构成,该造型采用艺术玻璃制作,屏风其余部分使用实木材料(本题中π取3,长度单位为米).(1)制作一扇该屏风需要多少平方米的艺术玻璃?需要多少平方米的实木材料?(请用含x、y的代数式表示)(2)某酒店需要定制50扇该屏风,在同等工艺的前提下,甲、乙两个厂商报价如下:甲厂商:实木材料每平方米800元,艺术玻璃每平方米500元,总价打九折;乙厂商:实木材料每平方米700元,艺术玻璃每平方米600元,且每购买1平方米实木材料赠送0.1平方米的艺术玻璃.当x=0.1,y=2时,制作一扇该屏风分别需要多少平方米的艺术玻璃和实木材料?该酒店在哪家厂商购买屏风合算,最终总费用是多少元?30.(2526七年级上·江苏泰州·阶段练习)【背景介绍】:绝对值在初中数学中是一个基础核心概念和关键枢纽.它看似简单,但却是连接算术与代数、串联多种数学思想的重要节点.【自主回忆】:(1)请写出一个你对绝对值的了解:________.【引导思考1】:(2)分类讨论:如果a=3,b=【引导思考2】:几何意义:a−b表示数a、b在数轴上对应的点A、B之间的距离(3)如图表示数在数轴上四个点的位置关系,且它们表示的数分别为p、q、r、s.若q−s=11,p−r=13,p−s=19【尝试应用】:(4)符号:fP,a=x,y表示:对于数轴上任一点P,x和yx<y是与点P相距a个单位长度a>0的两点.如果点P、Q是数轴上的两个动点,fP,3=x,y,fQ,5=m,n(其中x<y,m<n).两点同时从原点出发,题型11整式加减的应用31.(2425七年级上·安徽·期末)观察下列单项式:−x,3x2,−5x3,7x4,⋯⋯,−37x(1)这组单项式的系数的符号规律是;系数的绝对值规律是.(2)这组单项式的次数的规律是.(3)根据上面的归纳,可以猜想第n个单项式是(只能填写一个代数式).(4)请你根据猜想,写出第2008个、第2009个单项式,它们分别是、.32.(2425七年级上·江苏常州·期中)阅读下列材料,完成相应的任务:一个含有多个字母的代数式中,如果任意交换两个字母的位置,代数式的值都不变,这样的代数式就叫做对称式.例如代数式abc中任意两个字母交换位置,可得到代数式bac、acb、cba,因为abc=bac=acb=cba,所以abc是对称式;而代数式a−b中字母a、b交换位置,得到代数式b−a,因为a−b≠b−a,所以任务:(1)下列四个代数式中,是对称式的是_______(填序号即可);①a+b+c;②a2−b;③ab2(2)写出一个只含有字母m,n的单项式,使该单项式是对称式,且次数为8次;(3)已知A=2a2−433.(2425七年级上·贵州贵阳·期中)阅读材料,解答问题:一个含有多个字母的式子中,任意交换两个字母的位置,当字母的取值均不相等,且都不为0时,式子的值保持不变,这样的式子叫作对称式.例如:式子a×b中两个字母交换位置,可得到b×a,因为a×b=b×a,所以a×b是对称式.而式子a−b中的字母a,b交换位置,得到式子b−a,但是a−b≠b−a,所以a−b不是对称式.(1)①a+b;②a2b;③(2)写出一个只含有字母a,b且次数为3的多项式,使该多项式是对称式:______;(3)已知A=2a2+4b2题型12单项式规律题34.(2425七年级上·吉林长春·期末)有一列式子,按一定规律排列成−2a,4a3,−8a5,16a7,A.−2na2n−1 B.(−2)na35.(2425七年级上·安徽阜阳·期中)观察下列单项式:第1个单项式:2a第2个单项式:4a第3个单项式:6a第4个单项式:8a……(1)第5个单项式为______.(2)第n个单项式为______(用含有n的式子表示).(3)前3个(第1个到第3个)单项式中字母a,b的所有指数之和为2+2+2+1+3+5=15,求前10个(第1个到第10个)单项式中字母a,b的所有指数之和.36.(2223七年级上·云南昆明·期末)在数学活动中,针对题目“按一定规律排列的单项式:−x,3x2,−5x3.7x(1)首先杨老师给出如下四个引导问题:①这组单项式中不变的是什么?直接写下来.②这组单项式中系数的符号规律是什么?③这组单项式中系数的绝对值规律是什么?④这组单项式的次数规律是什么?同学们回答完四个问题后,继续进行了以下探究:⑤猜想出第n个单项式是__________;(只用一个含n的式子表示,n是正整数)⑥第2023个单项式是__________.(2)接着,数学学习小组对问题进行了迁移.按一定规律排列的等式:第一个等式:32第二个等式:52第三个等式:72第四个等式:92…,第n个等式是:__________(n是正整数);(3)请你利用以上结论计算20232题型13将多项式按某个字母升幂(降幂)排列37.(2425七年级上·四川资阳·期末)下列说法:①实数a,b在数轴上对应的点的位置如图所示,则a+b>0;②过直线外一点有且只有一条直线与已知直线平行;③将多项式a2+b2−2ab按b的升幂排列是a2−2ab+b2;④若多项式xA.1个 B.2个 C.3个 D.4个38.(2425七年级上·四川成都·期中)若一个多项式同时满足条件:①各项系数均为整数,②按某个字母“降幂排列”,③各项系数的绝对值从左到右也是“从大到小”排列,则称该多项式是这个字母的“和谐多项式”,简称该多项式是“和谐多项式”.例如:多项式5x3−3x2(1)把多项式−3x3+2x−4(2)若关于a,b的多项式ka3b3−2(3)已知M,N均为关于x,y的三次三项式,其中M=x2y+xy2+nx3,N=−x2y−mx39.(2425七年级上·全国·课后作业)已知关于x、y的多项式3x(1)当a=1,b=−1时,该多项式的次数为__________,一次项为__________;(2)在(1)的条件下,若x=2,y=−1,求多项式的值;(3)我们称各项的次数都相同的多项式为齐次多项式,如2a3+5ab2(4)若该多项式是一个六次三项式,求a的值,并把该多项式按x的升幂排列.题型14数字类规律探索40.(2526七年级上·重庆江北·期中)计算:12+141.(2526七年级上·安徽淮北·阶段练习)某一动点在一条数轴上移动,第1次向数轴正方向移动1个单位长度,记作+1;第2次向数轴正方向移动2个单位长度,记作+2;第3次向数轴负方向移动3个单位长度,记作−3;第4次向数轴负方向移动4个单位长度,记作−4;第5次向数轴正方向移动5个单位长度,记作+5;第6次向数轴正方向移动6个单位长度,记作+6;第7次向数轴负方向移动7个单位长度,记作−7;第8次向数轴负方向移动8个单位长度,记作−8……直到第2026次移动后结束.若按照此规律,第2026次移动后,动点最终在数轴上的位置所表示的数是(

)A.2024 B.2025 C.2026 D.202742.(2526七年级上·辽宁沈阳·阶段练习)类比推理是一种重要的推理方法,根据两种事物在某些特征上相似,得出它们其持征上也可能相似的结论.在异分母的分数的加减法中,往往先化作同分母,然后分子相加减,例如:12−13=32×3(1)猜想并写出:19×10(2)探究并计算下列各式:①11×2②1题型15图形类规律探索43.(2526九年级上·重庆·阶段练习)按如图所示的规律拼图案,其中第①个图中有6个圆点,第②个图中有10个圆点,第③个图中有14个圆点,…,按照这一规律,则第⑥个图中圆点的个数是(

)A.24 B.26 C.28 D.3044.(2526七年级上·四川内江·阶段练习)在一次综合实践活动课上,张老师给每位同学发了一张边长为1的正方形纸片,请同学们思考如何通过折纸的方法求出12【操作探究】“乘风”小组的同学经过一番思考和讨论交流后,进行了如下操作:如图,将边长为1的正方形纸片分割成7个部分,第①部分是边长为1的正方形纸片面积的一半,第②部分是第①部分面积的一半,第③部分是第②部分面积的一半,……,依次类推,则图中空白部分的面积为12“破浪”小组是这样思考的:设S=1将等式两边同时乘12得1将上式减去下式得12S=12−【过程思考】(1)图中阴影部分的面积是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论