安徽省铜陵市2026届高二数学第一学期期末复习检测试题含解析_第1页
安徽省铜陵市2026届高二数学第一学期期末复习检测试题含解析_第2页
安徽省铜陵市2026届高二数学第一学期期末复习检测试题含解析_第3页
安徽省铜陵市2026届高二数学第一学期期末复习检测试题含解析_第4页
安徽省铜陵市2026届高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省铜陵市2026届高二数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A B.C. D.62.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B.C. D.3.若双曲线与椭圆有公共焦点,且离心率,则双曲线的标准方程为()A. B.C. D.4.圆与圆的位置关系是()A.内切 B.相交C.外切 D.相离5.随机抽取甲乙两位同学连续9次成绩(单位:分),得到如图所示的成绩茎叶图,关于这9次成绩,则下列说法正确的是()A.甲成绩的中位数为33 B.乙成绩的极差为40C.甲乙两人成绩的众数相等 D.甲成绩的平均数低于乙成绩的平均数6.已知等比数列满足,则q=()A.1 B.-1C.3 D.-37.双曲线C:的渐近线方程为()A. B.C. D.8.若等差数列的前项和为,首项,,,则满足成立的最大正整数是()A. B.C. D.9.有一个圆锥形铅垂,其底面直径为10cm,母线长为15cm.P是铅垂底面圆周上一点,则关于下列命题:①铅垂的侧面积为150cm2;②一只蚂蚁从P点出发沿铅垂侧面爬行一周、最终又回到P点的最短路径的长度为cm.其中正确的判断是()A.①②都正确 B.①正确、②错误C.①错误、②正确10.在空间四边形中,,,,且,则()A. B.C. D.11.由下面的条件一定能得出为锐角三角形的是()A. B.C. D.12.为了了解某地区的名学生的数学成绩,打算从中抽取一个容量为的样本,现用系统抽样的方法,需从总体中剔除个个体,在整个过程中,每个个体被剔除的概率和每个个体被抽取的概率分别为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,点到x轴的距离为___________.14.若向量,且夹角的余弦值为________15.已知为平面的一个法向量,为直线的方向向量.若,则__________.16.古希腊数学家阿波罗尼斯发现:平面上到两定点A,B的距离之比为常数的点的轨迹是—个圆心在直线上的圆.该圆被称为阿氏圆,如图,在长方体中,,点E在棱上,,动点P满足,若点P在平面内运动,则点P对应的轨迹的面积是___________;F为的中点,则三棱锥体积的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左顶点、上顶点和右焦点分别为,且的面积为,椭圆上的动点到的最小距离是(1)求椭圆的方程;(2)过椭圆的左顶点作两条互相垂直的直线交椭圆于不同的两点(异于点).①证明:动直线恒过轴上一定点;②设线段中点为,坐标原点为,求的面积的最大值.18.(12分)已知抛物线C:,直线l经过点,且与抛物线C交于M,N两点,其中.(1)若,且,求点M的坐标;(2)是否存在正数m,使得以MN为直径的圆经过坐标原点O,若存在,请求出正数m,若不存在,请说明理由.19.(12分)2021年11月初某市出现新冠病毒感染者,该市教育局部署了“停课不停学”的行动,老师们立即开展了线上教学.某中学为了解教学效果,于11月30日复课第一天安排了测试,数学教师为了调查高二年级学生这次测试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的统计图:(1)根据统计图填写下面列联表,是否有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时25每天在线学习数学的时长超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,按分层抽样的方法抽取5名,再从这5名同学中随机抽取2名,求这两名同学中至多有一名每天在线学习数学的时长超过1小时的概率附:,其中.参考数据:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若与相交于A、两点,设,求.21.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.22.(10分)2021年10月16日,搭载“神舟十三号”的火箭发射升空,有很多民众通过手机、电视等方式观看有关新闻.某机构将关注这件事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,从参与调查的人群中随机抽取100人进行分析,得到下表(单位:人):天文爱好者非天文爱好者合计女203050男351550合计5545100(1)能否有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,记其中“天文爱好者”的人数为X,求X的分布列和数学期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.828

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.2、B【解析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养3、A【解析】首先求出椭圆的焦点坐标,然后根据可得双曲线方程中的的值,然后可得答案.【详解】椭圆焦点坐标为所以双曲线的焦点在轴上,,因为,所以,所以双曲线的标准方程为故选:A4、B【解析】判断圆心距与两圆半径之和、之差关系即可判断两圆位置关系.【详解】由得圆心坐标为,半径,由得圆心坐标为,半径,∴,,∴,即两圆相交.故选:B.5、D【解析】按照茎叶图所给的数据计算即可.【详解】由茎叶图可知,甲的成绩为:11,22,23,24,32,32,33,41,52,其中位数为32,众数为32,平均数为;乙的成绩为:10,22,31,32,35,42,42,50,52,极差为52-10=42,众数为42,平均数为;由以上数据可知,A错误,B错误,C错误,D正确;故选:D.6、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.7、D【解析】根据给定的双曲线方程直接求出其渐近线方程作答.【详解】双曲线C:的实半轴长,虚半轴长,即有,而双曲线C的焦点在y轴上,所以双曲线C的渐近线的方程为,即.故选:D8、B【解析】由等差数列的,及得数列是递减的数列,因此可确定,然后利用等差数列的性质求前项和,确定和的正负【详解】∵,∴和异号,又数列是等差数列,首项,∴是递减的数列,,由,所以,,∴满足的最大自然数为4040故选:B【点睛】关键点睛:本题求满足的最大正整数的值,关键就是求出,时成立的的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.9、C【解析】根据圆锥的侧面展开图为扇形,由扇形的面积公式计算即可判断①,在展开图中可知沿着爬行即为最短路径,计算即可判断②.【详解】直径为10cm,母线长为15cm.底面圆周长为.将其侧面展开后得到扇形半径为cm,弧长为,则扇形面积为,①错误.将其侧面展开,则爬行最短距离为,由弧长公式得展开后扇形弧度数为,作,,又,,cm,②正确.故选:C10、A【解析】利用空间向量的线性运算即可求解.【详解】..故选:A.11、D【解析】对于A,两边平方得,由得,即为钝角;对于B,由正弦定理求出,进而求出,可得结果;对于C,根据平方关系将余弦化为正弦,用正弦定理可将角转化为边,进而可得的值,从而作出判断;对于D,由可得,推出,,,故可知三个内角均为锐角【详解】解:对于A,由,两边平方整理得,,因为,所以,所以,所以,所以为钝角三角形,故A不正确;对于B,由,得,所以,因为,所以,所以或,所以或,所以为直角三角形或钝角三角形,故B不正确;对于C,因为,所以,即,由正弦定理得,由余弦定理得,因为,所以,故三角形为钝角三角形,C不正确;对于D,由可得,因为中最多只有一个钝角,所以,,中最多只有一个为负数,所以,,,所以中三个内角都为锐角,所以为锐角三角形,故D正确;故选:D12、D【解析】根据每个个体被抽取的概率都是相等的、被剔除的概率也都是相等的,分别由剔除的个数和抽取的样本容量除以总体个数即可求解.【详解】根据系统抽样的定义和方法可知:每个个体被抽取的概率都是相等的,每个个体被剔除的概率也都是相等的,所以每个个体被剔除的概率为,每个个体被抽取的概率为,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由空间直角坐标系中点到轴的距离为计算可得【详解】解:空间直角坐标系中,点到轴的距离为故答案为:14、【解析】根据求解即可.【详解】,故答案为:【点睛】本题主要考查了求空间中两个向量的夹角,属于基础题.15、##【解析】根据线面平行列方程,化简求得的值.【详解】由于,所以.故答案为:16、①.②.【解析】建立空间直角坐标系,根据,可得对应的轨迹方程;先求的面积,其是固定值,要使体积最小,只需求点到平面的距离的最小值即可.【详解】分别以为轴建系,设,而,,,,.由,有,化简得对应的轨迹方程为.所以点P对应的轨迹的面积是.易得的三个边即是边长为为的等边三角形,其面积为,,设平面的一个法向量为,则有,可取平面的一个法向量为,根据点的轨迹,可设,,所以点到平面的距离,所以故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①证明见解析;②【解析】(1)根据题意得,,解方程即可;(2)①设直线:,直线:,联立曲线分别求出点和的坐标,求直线方程判断定点即可;②根据题意得,代入求最值即可.【小问1详解】根据题意得,,,又,三个式子联立解得,,,所以椭圆的方程为:【小问2详解】①证明:设两条直线分别为和,根据题意和得斜率存在且不等于;因为,所以设直线:,直线:;由,解得,所以,同理,.当时,,所以直线的方程为:,整理得,此时直线过定点;当时,直线的方程为:,此时直线过定点,故直线恒过定点.②根据题意得,,,,所以,当且仅当,即时等号成立,故的面积的最大值为:.【点睛】解决直线与椭圆综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题18、(1)或(2)存在,【解析】(1)确定点为抛物线的焦点,则根据抛物线的焦半径公式,结合抛物线方程,求得答案;(2)假设存在正数m,使得以MN为直径的圆经过坐标原点O,可推得,由此可设直线方程,联立抛物线方程,利用根与系数的关系,代入到中,可得结论.【小问1详解】依题意得为的焦点,故,解得,故,则∴点的坐标或;【小问2详解】假设存在正数,使得以为直径的圆经过坐标原点,∴,设直线:,,,由,得,则,,∵,,∴,解得或(舍去)所以存在正数,使得以为直径的圆经过坐标原点.19、(1)表格见解析,有(2)【解析】(1)根据统计图计算填表即可;(2)根据古典概型计算公式计算即可.【小问1详解】根据统计图可得:每天在线学习数学的时长不超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长不超过1小时数学成绩超过120分的有人,每天在线学习数学的时长超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长超过1小时数学成绩超过120分的有人,可得列联表如下:数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时151025每天在线学习数学的时长超过1小时51520总计202545根据列联表中的数据,所以有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”【小问2详解】由列联表可得,被抽查学生中这次数学成绩超过120分的有25人,其中每天在线学习数学的时长不超过1小时的有10人,每天在线学习数学的时长超过1小时的有15人,人数比为2∶3,按分层抽样每天在线学习数学的时长不超过1小时的抽2人,记为:1,2;每天在线学习数学的时长超过1小时的抽3人,记为:a,b,c.所有可能结果如下:,共计10种.设事件A为“两名同学中至多有一名每天在线学习数学时长超过一小时”包含这7种可能结果所以20、(1)曲线的普通方程为;曲线的直角坐标方程为(2)【解析】(1)直接利用转换关系式把参数方程和极坐标方程转化为直角坐标方程;(2)易得满足直线的方程,转化为参数方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论