(完整版)初一数学下册期末压轴题试题(带答案)-(二)_第1页
(完整版)初一数学下册期末压轴题试题(带答案)-(二)_第2页
(完整版)初一数学下册期末压轴题试题(带答案)-(二)_第3页
(完整版)初一数学下册期末压轴题试题(带答案)-(二)_第4页
(完整版)初一数学下册期末压轴题试题(带答案)-(二)_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足+|b﹣2|=0,D为线段AC的中点.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).(1)则A点的坐标为;点C的坐标为,D点的坐标为.(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ,若存在,请求出t的值;若不存在,请说明理由.(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,请确定∠OHC,∠ACE和∠OEC的数量关系,并说明理由.2.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.(1)=;(2)如图2,点C、D是、角平分线上的两点,且,求的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若,,且,求n的值.3.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.4.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系;(问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由.②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系.5.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.6.已知,,.(1)如图1,求证:;(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数.7.我们知道,任意一个正整数都可以进行这样的分解:(,是正整数,且),在的所有这种分解中,如果,两因数之差的绝对值最小,我们就称是的最佳分解,并规定:.例如:可分解成,或,因为,所以是的最佳分解,所以(1)填空:;;(2)一个两位正整数(,,,为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为,求出所有的两位正整数;并求的最大值;(3)填空:①;②;8.阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若b﹣a=c﹣b,我们称这个多位数为等差数.例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5;413223分成三个数41,32,23,并且满足:32﹣41=23﹣32;所以:357和413223都是等差数.(1)判断:148等差数,514335等差数;(用“是”或“不是”填空)(2)若一个三位数是等差数,试说明它一定能被3整除;(3)若一个三位数T是等差数,且T是24的倍数,求该等差数T.9.新定义:对非负数x“四舍五入”到个位的值记为<x>,即当n为非负数时,若,则<x>=n.例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,…试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x的取值范围是________________.(2)若关于x的不等式组的整数解恰有4个,求<m>的值;(3)求满足的所有非负实数x的值.10.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n个a(a≠0)记作aⓝ,读作“a的圈n次方”.(初步探究)(1)直接写出计算结果:2③=,(﹣)⑤=;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④=;5⑥=;(﹣)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于;11.小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:,反之,这个式子仍然成立,即:.(1)问题发现观察下列等式:①,②,③,…,猜想并写出第个式子的结果:.(直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:,类比该问题的做法,请直接写出下列各式的结果:①;②;(3)拓展延伸计算:.12.观察下列各式:;;;……根据上面的等式所反映的规律,(1)填空:______;______;(2)计算:13.已知、两点的坐标分别为,,将线段水平向右平移到,连接,,得四边形,且.(1)点的坐标为______,点D的坐标为______;(2)如图1,轴于,上有一动点,连接、,求最小时点位置及其坐标,并说明理由;(3)如图2,为轴上一点,若平分,且于,.求与之间的数量关系.14.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)15.如图,已知点,,.(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标__________(用含的式子表示).16.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表:数量范围(千克)不超过50的部分50以上但不超过150的部分150以上的部分价格(元)零售价的95%零售价的85%零售价的75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x千克苹果(),问师傅应怎样选择两家批发商所花费用更少?17.在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标;(2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应,与对应),连接如图2所示.若表示△BCD的面积),求点、的坐标;(3)在(2)的条件下,在轴上是否存在一点,使表示△PCD的面积)?若存在,求出点的坐标;若不存在,请说明理由.18.在平面直角坐标系中描出下列两组点,分别将每组里的点用线段依次连接起来.第一组:、;第二组:、.(1)线段与线段的位置关系是;(2)在(1)的条件下,线段、分别与轴交于点,.若点为射线上一动点(不与点,重合).①当点在线段上运动时,连接、,补全图形,用等式表示、、之间的数量关系,并证明.②当与面积相等时,求点的坐标.19.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.20.五一节前,某商店拟购进A、B两种品牌的电风扇进行销售,已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?21.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值.小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B2AB,B1C2BC,C1A2CA,根据等高两三角形的面积比等于底之比,所以2S△ABC2a,由此继续推理,从而解决了这个问题.(1)直接写出S1(用含字母a的式子表示).请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积.(3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值.22.甲从A地出发步行到B地,乙同时从B地步行出发至A地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a千米/小时,乙刚出发的速度为b千米/小时.(1)A、B两地的距离可以表示为千米(用含a,b的代数式表示);(2)甲从A到B所用的时间是:小时(用含a,b的代数式表示);乙从B到A所用的时间是:小时(用含a,b的代数式表示).(3)若当甲到达B地后立刻按原路向A返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB两地的距离为多少?23.新定义,若关于,的二元一次方程组①的解是,关于,的二元一次方程组②的解是,且满足,,则称方程组②的解是方程组①的模糊解.关于,的二元一次方程组的解是方程组的模糊解,则的取值范围是________.24.学校组织名同学和名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为人/辆,小客车载客量为人/辆(1)学校准备租用辆客车,有几种租车方案?(2)在(1)的条件下,若大客车租金为元/辆,小客车租金为元/辆,哪种租车方案最省钱?(3)学校临时增加名学生和名教师参加活动,每辆大客车有2名教师带队,每辆小客车至少有名教师带队.同学先坐满大客车,再依次坐满小客车,最后一辆小客车至少要有人,请你帮助设计租车方案25.如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动.若两点同时出发,其中一点到达终点时,运动停止.(Ⅰ)直接写出三个点的坐标;(Ⅱ)设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积;(Ⅲ)当三角形的面积的范围小于16时,求运动的时间的范围.26.对、定义了一种新运算T,规定(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,已知,.(1)求,的值;(2)求.(3)若关于的不等式组恰好有4个整数解,求的取值范围.27.如图,数轴上两点A、B对应的数分别是-1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|=2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有;(直接写出结果)(2)若k使得方程组中的x,y均为连动数,求k所有可能的取值;(3)若关于x的不等式组的解集中恰好有4个连动整数,求这4个连动整数的值及a的取值范围.28.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.29.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C.(1)则a=,b=,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值.30.对,定义一种新的运算,规定:(其中).(1)若已知,,则_________.(2)已知,.求,的值;(3)在(2)问的基础上,若关于正数的不等式组恰好有2个整数解,求的取值范围.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1),,;(2)存在,;(3)【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,得出点A,C的坐标,再运用中点公式求出点D的坐标;(2)根据题意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据S△ODP=S△ODQ,列方程求解即可;(3)过点H作HP∥AC交x轴于点P,先证明OG∥AC,再根据角的和差关系以及平行线性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【详解】解:(1),,,,,,,设,为线段的中点.,,,故答案为:,,;(2)存在,.由条件可知:点从点运动到点需要时间为2秒,点从点运动到点需要时间2秒,,点在线段上,,,,,,,,,.(3)如图2,,,,,,,,如图,过点作交轴于点,则,,,,∴.【点睛】本题考查了平行线的性质,三角形面积,非负数的性质,中点坐标公式等,是一道三角形综合题,解题关键是学会添加辅助线,运用转化的思想思考问题.2.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分别延长AC、CD交GH于点E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)设FB交MN于K,∵,则;∴∵,∴,,在△FAK中,,∴,∴.经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.3.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.4.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ∥EF,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ∥EF,如图:∵,∴,∴,,∵∴;(2)①;理由如下:如图,过作交于,∵,∴,∴,,∴;②当点在延长线时,如备用图1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;当在之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.5.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明:;(2)过点E作,延长DC至Q,过点M作,,,AF平分FH平分设,.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.7.(1),1;(2)两位正整数为39,28,17,的最大值为;(3)①;②【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a,个位上数字为b,则原数可以表示为,交换后十位上数字为b,个位上数字为a,则交换后数字可以表示为,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a与b的关系式,进而求出所有的两位数,然后求解确定出的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)∵,∴;∵,∴,故答案为:;1;(2)由题意可得:交换后的数减去交换前的数的差为:,∴,∵,∴或或,∴t为39,28,17;∵39=1×39=3×13,∴;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵∴;②∴;故答案为:;【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.8.(1)不是,是;(2)见解析;(3)432或456或840或864或888【分析】(1)根据等差数的定义判定即可;(2)设这个三位数是M,,根据等差数的定义可知,进而得出即可.(3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即可求解.【详解】解:(1)∵,∴148不是等差数,∵,∴514335是等差数;(2)设这个三位数是M,,∵,∴,∵,∴这个等差数是3的倍数;(3)由(2)知,∵T是24的倍数,∴是8的倍数,∵2c是偶数,∴只有当35a也是偶数时才有可能是8的倍数,∴或4或6或8,当时,,此时若,则,若,则,若,则,大于70又是8的倍数的最小数是72,之后是80,88当时不符合题意;当时,,此时若,则,若,则,(144、152是8的倍数),当时,,此时若,则,若,则,(216、244是8的倍数),当时,,此时若,则,若,则,若,则,(280,288,296是8的倍数),∵,∴若a是偶数,则c也是偶数时b才有意义,∴和是c是奇数均不符合题意,当时,,当时,,当时,,当时,,当时,,综上,T为432或456或840或864或888.【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键.9.(1)10;(2)(3):0,1,2【详解】分析:(1)①利用对非负数x“四舍五入”到个位的值为<x>,进而求解即可;(2)首先将<m>看做一个字母,解不等式,进而根据整数解的个数得出m的取值;(3)利用得出关于x的不等式,求解即可.详解:(1)①10,②;(2)解不等式组得:由不等式组的整数解恰有4个得,,∴;(3)∵,∴,,∴,∵x为非负整数,∴x的值为:0,1,(2)点睛:此题主要考查了理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题得解.10.初步探究:(1),-8;深入思考:(1)(−)2,()4,;(2)【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为,则;【详解】解:初步探究:(1)2③=2÷2÷2=,;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−)2=(−)2;5⑥=5÷5÷5÷5÷5÷5=()4;同理可得:(﹣)⑩=;(2)【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.11.(1);(2)①;②;(3).【分析】(1)根据题目中的式子可以写出第n个式子的结果;(2)①根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;②根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值.【详解】解:(1)由题目中的式子可得,,故答案为:;(2)①,故答案为:;②,故答案为:;(3).【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.12.(1);;(2).【分析】(1)根据已知数据得出规律,,进而求出即可;(2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1);;(2)===.【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.13.(1),;(2),理由见解析;(3)【分析】(1)根据已知条件求出AD和BC的长度,即可得到D、C的坐标;(2)连接BD与直线CG相交,其交点Q即为所求,然后根据求出QC、QG后即可得到Q点坐标;(3)过H作HF∥AB,过C作CM∥ED,则根据已知条件、平行线的性质和角的有关知识可以得到.【详解】(1)解:由题意可得四边形ABCD是平行四边形,且AD与BC间距离为1-(-1)=2,∴平行四边形ABCD的高为2,∴AD=BC=S四边形ABCD÷2=12÷2=6,∴C点坐标为(-4+6,-1)即(2,-1),D点坐标为(-2+6,1)即(4,1);(2)解:如图,连接交于,∵,∴此时最小(两点之间,线段最短),过作于,∵,,,∴,,,设,∴,,,又∵,∴,∴,∴,∴.(3)∵,,∴,,∴.∵平分,∴.又∵,设,则,∴,,过作,又∵,∴,∴,∴.过作,∴,.∵于,∴,∴,∴,又∵,∴.【点睛】本题考查平行线的综合应用,熟练掌握平行线的判定与性质、平移坐标变换规律、两点之间线段最短的性质、角的有关知识和运算是解题关键.14.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.15.(1)2;(2);(3)或【分析】(1)直接利用以为底,进行求面积;(2)的面积等于的面积,需要分三种情况进行分类讨论;(3)根据推导出,然后分两种情况进行讨论,即当位于轴负半轴上时与位于轴正半轴上时.【详解】解:(1).(2)作如下图形,进行分类讨论:①当点在轴正半轴上时,,;②当点在轴负半轴上时,,;③当点在轴负半轴上时,,;因此符合条件的点坐标有3个,分别是.(3),,,即与点到的距离相等,,,,由可推出,①位于轴负半轴上时,,,,;②位于轴正半轴上时,,,综上:点的坐标为或.【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解.16.(1)在乙家批发更优惠;(2)当x=200时他选择任何一家批发所花费用一样多;当100<x<200时,师傅应选择甲家批发商所花费用更少;当x>200时,师傅应选择乙家批发商所花费用更少.【分析】(1)分别求出在甲、乙两家批发240千克苹果所需费用,比较后即可得出结论;(2)分两种情况:①若100<x≤150时,②若x>150时,分别用含x的代数式表示出在甲、乙两家批发x千克苹果所需费用,再比较大小,列出不等式,求出x的范围,即可得到结论.【详解】(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(240−150)×8×75%=1600(元),∵1632>1600,∴在乙家批发更优惠;(2)①若100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(x−50)×8×85%=6.8x+40,∵6.8x<6.8x+40,∴师傅应选择甲家批发商所花费用更少;②若x>150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(x−150)×8×75%=6x+160,当6.8x=6x+160时,即x=200时,师傅选择两家批发商所花费用一样多,当6.8x>6x+160时,即x>200时,师傅应选择乙家批发商所花费用更少,当6.8x<6x+160时,即150<x<200时,师傅应选择甲家批发商所花费用更少.综上所得:当x=200时他选择任何一家批发所花费用一样多;当100<x<200时,师傅应选择甲家批发商所花费用更少;当x>200时,师傅应选择乙家批发商所花费用更少.【点睛】本题主要考查代数式,一元一次方程,一元一次不等式的综合实际应用,理清数量关系,列出代数式,不等式或方程,是解题的关键.17.(1);(2);(3)存在点,其坐标为或.【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据S△BCD=7(S△BCD建立方程求解,即可);(3)设出点P的坐标,表示出PC用,建立方程求解即可.【详解】(1)∵B(3,0)平移后的对应点,∴设,∴即线段向左平移5个单位,再向上平移4个单位得到线段∴点平移后的对应点;(2)∵点C在轴上,点D在第二象限,∴线段向左平移3个单位,再向上平移个单位,∴连接,,∴∴;(3)存在设点,∴∵,∴∴,∴∴存在点,其坐标为或.【点睛】本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.18.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,证明见解析;②点M的坐标为(0,)或(0,).【分析】(1)根据两点的纵坐标相等,连线平行x轴进行判断即可;(2)①过点M作MN∥AC,运用平行线的判定和性质即可;②设M(0,m),分两种情况:(i)当点M在线段OB上时,(ii)当点M在线段OB的延长线上时,分别运用三角形面积公式进行计算即可.【详解】解:(1)∵A(−3,3)、C(4,3),∴AC∥x轴,∵D(−2,−1)、E(2,−1),∴DE∥x轴,∴AC∥DE;(2)①如图,∠CAM+∠MDE=∠AMD.理由如下:过点M作MN∥AC,∵MN∥AC(作图),∴∠CAM=∠AMN(两直线平行,内错角相等),∵AC∥DE(已知),∴MN∥DE(平行公理推论),∴∠MDE=∠NMD(两直线平行,内错角相等),∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代换).②由题意,得:AC=7,DE=4,设M(0,m),(i)当点M在线段OB上时,BM=3−m,FM=m+1,∴S△ACM=AC•BM=×7×(3−m)=,S△DEM=DE•FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);(ii)当点M在线段OB的延长线上时,BM=m−3,FM=m+1,∴S△ACM=AC•BM=×7×(m−3)=,S△DEM=DE•FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);综上所述,点M的坐标为(0,)或(0,).【点睛】本题考查了三角形面积,平行坐标轴的直线上的点的坐标的特征,平行线的判定和性质等,解题关键是运用数形结合思想和分类讨论思想.19.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.【详解】解:(1)设长为3x,宽为2x,则:3x•2x=30,∴x=(负值舍去),∴3x=,2x=,答:这个长方形纸片的长为,宽为;(2)正确.理由如下:根据题意得:,解得:,∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.20.(1)A、B两种品牌电风扇每台的进价分别是100元、150元;(2)为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风扇2台.【分析】(1)设A种品牌电风扇每台进价元,B种品牌电风扇每台进价元,根据题意即可列出关于x、y的二元一次方程组,解出x、y即可.(2)设购进A品牌电风扇台,B品牌电风扇台,根据题意可列等式,由a和b都为整数即可求出a和b的值的几种可能,然后分别算出每一种情况的利润进行比较即可.【详解】(1)设A、B两种品牌电风扇每台的进价分别是x元、y元,由题意得:,解得:,答:A、B两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A种品牌的电风扇a台,购进B种品牌的电风扇b台,由题意得:100a+150b=1000,其正整数解为:或或,当a=1,b=6时,利润=80×1+100×6=680(元),当a=4,b=4时,利润=80×4+100×4=720(元),当a=7,b=2时,利润=80×7+100×2=760(元),∵680<720<760,∴当a=7,b=2时,利润最大,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风扇2台.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出等量关系列出等式是解答本题的关键.21.(1)19a;(2)315;(3).【解析】【分析】(1)首先根据题意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,则可求得面积S1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC的面积;(3)设S△BPF=m,S△APE=n,依题意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,从而求解.【详解】解:(1)连接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案为:19a;(2)过点作于点,设,,;,.,即.同理,...①,,.②由①②,得,.(3)设,,如图所示.依题意,得,..,.,,...【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.22.(1)2(a+b);(2)(2+);(2+);(3)36.【分析】(1)根据两地间的距离=两人的速度之和×第一次相遇所需时间,即可得出结论;(2)利用时间=路程÷速度结合2小时后第一次相遇,即可得出结论;(3)设AB两地的距离为S千米,根据路程=速度×时间,即可得出关于(a+b),S的二元一次方程组(此处将a+b当成一个整体),解之即可得出结论.【详解】(1)A、B两地的距离可以表示为2(a+b)千米.故答案为:2(a+b).(2)甲乙相遇时,甲已经走了千米,乙已经走了千米,根据相遇后他们的速度都提高了1千米/小时,得甲还需小时到达B地,乙还需小时到达A地,所以甲从A到B所用的时间为(2+)小时,乙从B到A所用的时间为(2+)小时.故答案为:(2+);(2+).(3)设AB两地的距离为S千米,3小时36分钟=小时.依题意,得:,令x=a+b,则原方程变形为,解得:.答:AB两地的距离为36千米.【点睛】本题考查了列代数式以及二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m的取值范围便可.【详解】解:解方程组得:,解方程组得:,∵关于,的二元一次方程组的解是方程组的模糊解,因此有:且,化简得:,即解得:,故答案为.【点睛】本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.24.(1)有3种租车方案;(2)租5辆大客车,2辆小客车最省钱;(3)租用大客车2辆,小客车7辆;或租10辆小客车.【分析】(1)设租大客车x辆,根据题意可列出关于x的不等式,求得不等式的解集后,再根据x为整数即可确定租车方案;(2)依次计算(1)题中的租车方案,比较结果即可得出答案;(3)设租大客车x辆,小客车y辆,根据客车的座位数满足的条件可确定x、y满足的不等式组,进一步可确定x、y满足的方程,再由带队的老师数可确定x、y满足的不等式,二者结合即可确定租车方案.【详解】解:(1)由题意知:本次乘车共270+7=277(人).设租大客车x辆,则小客车(7-x)辆,根据题意,得,解得:,因为x为整数,且x≤7,所以x=5,6,7,即有3种租车方案.(2)方案一:当x=7,所租7辆皆为大客车时,租车费用为:7×400=2800(元),方案二:当x=6,所租6辆为大客车,1辆为小客车时,租车费用为:6×400+300=2700(元),方案三:当x=5,所租5辆为大客车,2辆为小客车时,租车费用为:5×400+300×2=2600(元),所以,租5辆大客车,2辆小客车最省钱.(3)乘车总人数为270+7+10+4=291(人),因为最后一辆小客车最少20人,则客车空位不能大于10个,所以客车的总座位数应满足:291≤座位数≤301.设租大客车x辆,小客车y辆,则291≤45x+30y≤301,即,∵x、y均为整数,∴3x+2y=20,即.∵每辆大客车有2名教师带队,每辆小客车至少有名教师带队,∴2x+y≤11.把代入上式,得,解得.又∵x为整数且是2的倍数,∴x=2,y=7或x=0,y=10.故租车方案为:租大客车2辆,小客车7辆;或租10辆小客车.【点睛】本题考查了不等式和不等式组的实际应用、二元一次方程的整数解等知识,正确理解题意,列出不等式和不等式组是解题的关键.25.(Ⅰ);(Ⅱ)当时,三角形的面积为;当时,三角形的面积为;(Ⅲ)或.【分析】(Ⅰ)先求出的长,再根据的长即可得;(Ⅱ)先分别求出点运动到点所需时间、点运动到点所需时间,从而可得,再分和两种情况,分别利用三角形的面积公式、梯形的面积公式即可得;(Ⅲ)根据(Ⅱ)的结论,分和两种情况,分别建立不等式,解不等式即可得.【详解】解:(Ⅰ)轴,,,轴,,;(Ⅱ)∵点运动的路径长为,所用时间为7秒;点运动的路径长为,所用时间为秒,∴根据其中一点到达终点时运动停止可知,运动时间的取值范围为,点运动到点所用时间为4秒,点运动到点所用时间为,因此,分以下两种情况:①如图,当时,,则三角形的面积为;②当时,如图,过点作,交延长线于点,,,则三角形的面积为,,,综上,当时,三角形的面积为;当时,三角形的面积为;(Ⅲ)①当时,则,解得,则此时的取值范围为;②当时,则,解得,则此时的取值范围为,综上,当三角形的面积的范围小于16时,或.【点睛】本题考查了坐标与图形、三角形的面积公式、一元一次不等式的应用等知识点,较难的是题(Ⅱ),正确分两种情况讨论是解题关键.26.(1),;(2);(3).【分析】(1)根据题中的新定义列出关于与的方程组,求出方程组的解即可得到与的值;(2)利用题中的新定义将,代入计算即可;(3)利用题中的新定义化简已知不等式组,表示出解集,由不等式组恰好有4个整数解,确定出的范围,再解不等式组即可.【详解】解:(1)根据题意得:,解得:;(2)由(1)得:∴;(3)根据题意得:,由①得:;由②得:,不等式组的解集为,不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论