版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市华中师大一附中2025-2026学年高二上数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆=1的离心率为,则k的值为()A.4 B.C.4或 D.4或2.过点且斜率为的直线方程为()A. B.C. D.3.设,若函数,有大于零的极值点,则A. B.C. D.4.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.5.下列说法中正确的是A.命题“若,则”的逆命题为真命题B.若为假命题,则均为假命题C.若为假命题,则为真命题D.命题“若两个平面向量满足,则不共线”的否命题是真命题.6.抛物线焦点坐标为()A. B.C. D.7.如图,在棱长为1的正方体中,P、Q、R分别是棱AB、BC、的中点,以PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在正方体的表面上,则这个直三棱柱的体积为()A. B.C. D.8.执行如图所示的程序框图,输出的值为()A. B.C. D.9.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里10.已知直线与平行,则a的值为()A.1 B.﹣2C. D.1或﹣211.已知直线过点,且与直线垂直,则直线的方程是()A. B.C. D.12.某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两位老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分.如图所示,当,,时,则()A. B.C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线平行,则________.14.已知双曲线的渐近线方程为,,分别为C的左,右焦点,若动点P在C的右支上,则的最小值是______15.曲线在x=1处的切线方程为__________.16.如图直线过点,且与直线和分别相交于,两点.(1)求过与交点,且与直线垂直的直线方程;(2)若线段恰被点平分,求直线的方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且,,数列是公差不为0的等差数列,满足,且,,成等比数列.(1)求数列和通项公式;(2)设,求数列的前项和.18.(12分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.19.(12分)已知函数(1)当时,求在区间上的最值;(2)若在定义域内有两个零点,求的取值范围20.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分21.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.22.(10分)已知圆经过点和,且圆心在直线上(1)求圆的标准方程;(2)直线过点,且与圆相切,求直线的方程;(3)设直线与圆相交于两点,点为圆上的一动点,求的面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据焦点所在坐标轴进行分类讨论,由此求得的值.【详解】当焦点在轴上时,,且.当焦点在轴上时,且.故选:C2、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.3、B【解析】设,则,若函数在x∈R上有大于零的极值点即有正根,当有成立时,显然有,此时.由,得参数a的范围为.故选B考点:利用导数研究函数的极值4、D【解析】代入计算即可.【详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D5、D【解析】A中,利用四种命题的的真假判断即可;B、C中,命题“”为假命题时,、至少有一个为假命题;D中,写出该命题的否命题,再判断它的真假性【详解】对于A,命题“若,则”的逆命题是:若,则;因为也成立.所以A不正确;对于B,命题“”为假命题时,、至少有一个为假命题,所以B错误;C错误;对于D,“平面向量满足”,则不共线的否命题是,若“平面向量满足”,则共线;由知:,一定有,,所以共线,D正确.故选:D.【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题6、C【解析】由抛物线方程确定焦点位置,确定焦参数,得焦点坐标【详解】抛物线的焦点在轴正半轴,,,,因此焦点坐标为故选:C7、C【解析】分别取的中点,连接,利用棱柱的定义证明几何体是三棱柱,再证明平面PQR,得到三棱柱是直三棱柱求解.【详解】如图所示:连接,分别取其中点,连接,则,且,所以几何体是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因为正方体的棱长为1,所以,所以直三棱柱的体积为,故选:C8、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.9、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.10、A【解析】根据题意可得,解之即可得解.【详解】解:因为直线与平行,所以,解得.故选:A.11、D【解析】由题意设直线方程为,然后将点坐标代入求出,从而可求出直线方程【详解】因为直线与直线垂直,所以设直线方程为,因为直线过点,所以,得,所以直线方程为,故选:D12、B【解析】按照框图考虑成立和不成立即可求解.【详解】因为,,,所以输入,当成立时,,即,解得,,满足条件;当不成立时,,即,解得,,不满足条件;故.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直线平行的充要条件即可求出【详解】当时,显然两直线不平行,所以依题有,解得故答案为:14、【解析】首先根据双曲线的渐近线方程和焦点坐标,求出双曲线的标准方程;设,根据双曲线的定义可知,从而利用基本不等式即可求出的最小值.【详解】因为双曲线的渐近线方程为,焦点坐标为,,所以,即,所以双曲线方程为.设,则,且,,当且仅当,即时等号成立,所以的最小值是.故答案为:.15、【解析】根据导数的几何意义求切线方程的斜率并求出,再由点斜式写出切线方程即可.【详解】由题设,,则,而,所以在x=1处的切线方程为,即.故答案为:.16、(1);(2).【解析】本题考查直线方程的基本求法:垂直直线的求法、点关于点对称、点在直线上的待定系数法【详解】(1)由题可得交点,所以所求直线方程为,即;(2)设直线与直线相交于点,因为线段恰被点平分,所以直线与直线的交点的坐标为将点,的坐标分别代入,的方程,得方程组解得由点和点及两点式,得直线的方程为,即【点睛】直线的考法主要以点的对称和直线的平行与垂直为主.点关于点的对称,点关于直线的对称,直线关于直线的对称,是重点考察内容三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据,求出是以1为首项,3为公比的等比数列,求出的通项公式,求出的公差,进而求出的通项公式;(2)分组求和.【小问1详解】因为①,所以当时,②,①-②得:,即③,令得:,满足③,综上:是以1为首项,3为公比的等比数列,故,设的公差为d,则,因为,所以,解得:或0(舍去),所以【小问2详解】,则18、(1);(2),a的取值范围为.【解析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.【详解】(1)连结,由等边三角形可知:在中,,,,于是,故椭圆C的离心率为;(2)由题意可知,满足条件的点存在,当且仅当,,,即①②③由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点.故,a的取值范围为.【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.19、(1),;(2).【解析】(1)当时,求出导函数,求出函数得单调区间,即可求出在区间上的最值;(2)由,分离参数得,根据函数得单调性作图,结合图像即可得出答案.【详解】解:(1)当时,,,∴在单调递减,在单调递增,,,∴,(2),则,∴在单调递增,在单调递减,,当时,,当时,,作出函数和得图像,∴由图象可得,.20、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为点C到直线的距离,所以直线被圆C截得的弦长为21、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆锥曲线中证明角度相关的问题,往往需要转化为斜率或向量进行求解.22、(1)(2)或(3)【解析】(1)解法一,根据题意设圆的标准方程为,进而待定系数法求解即可;解法二:由题知圆心在线段的垂直平分线上,进而结合题意得圆的圆心与半径,写出方程;(2)分直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轨道有公共交通服务的条款制度
- 财务信息公开制度
- 2026湖南长沙市开福区青竹湖湘一健翎学校春季教师招聘8人备考考试试题附答案解析
- 2026中国科学院力学研究所高速流动失稳与混合科研团队招聘科研财务助理人员1人参考考试题库附答案解析
- 2026河北廊坊师范学院选聘26人备考考试题库附答案解析
- 六年级语文上册vj语文园地 含“口语交际”十三
- 2026年度上半年伊春汤旺县公安局公开招聘警务辅助人员20人参考考试题库附答案解析
- 2026甘肃金昌市机关事务管理局补招临聘驾驶员3人备考考试题库附答案解析
- 2026青海果洛州玛多县学前教育教师招聘12人备考考试题库附答案解析
- 2026年济宁梁山县事业单位公开招聘初级综合类岗位人员(34人)备考考试试题附答案解析
- 医院非产科孕情管理和三病检测工作流程
- GB/T 3487-2024乘用车轮辋规格系列
- CJT 313-2009 生活垃圾采样和分析方法
- 人工智能在塑料零件设计中的应用
- 《剧院魅影:25周年纪念演出》完整中英文对照剧本
- 蒋诗萌小品《谁杀死了周日》台词完整版
- tubeless胸科手术麻醉
- 物业保洁保安培训课件
- 人教版初中英语七至九年级单词汇总表(七年级至九年级全5册)
- 起重机械的安全围挡与隔离区域
- 水泥直塑施工方案
评论
0/150
提交评论