延安市重点中学2025-2026学年数学高二第一学期期末质量检测模拟试题含解析_第1页
延安市重点中学2025-2026学年数学高二第一学期期末质量检测模拟试题含解析_第2页
延安市重点中学2025-2026学年数学高二第一学期期末质量检测模拟试题含解析_第3页
延安市重点中学2025-2026学年数学高二第一学期期末质量检测模拟试题含解析_第4页
延安市重点中学2025-2026学年数学高二第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

延安市重点中学2025-2026学年数学高二第一学期期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若圆上至少有三个点到直线的距离为1,则半径的取值范围是()A. B.C. D.2.下列关于命题的说法错误的是A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若为的极值点,则”的逆命题为真命题3.已知抛物线过点,点为平面直角坐标系平面内一点,若线段的垂直平分线过抛物线的焦点,则点与原点间的距离的最小值为()A. B.C. D.4.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3C.6 D.5.对于两个平面、,“内有无数多个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知长方体中,,,则平面与平面所成的锐二面角的余弦值为()A. B.C. D.7.已知等差数列的前项和为,,公差,.若取得最大值,则的值为()A.6或7 B.7或8C.8或9 D.9或108.下列对动直线的四种表述不正确的是()A.与曲线C:可能相离,相切,相交B.恒过定点C.时,直线斜率是0D.时,直线的倾斜角是135°9.下列命题是真命题的个数为()①不等式的解集为②不等式的解集为R③设,则④命题“若,则或”为真命题A1 B.2C.3 D.410.已知函数的图象如图所示,则不等式的解集为()A. B.C. D.11.在平行六面体中,,,,则()A. B.5C. D.312.已知直线:恒过点,过点作直线与圆:相交于A,B两点,则的最小值为()A. B.2C.4 D.二、填空题:本题共4小题,每小题5分,共20分。13.若,是双曲线与椭圆的共同焦点,点P是两曲线的一个交点,且为等腰三角形,则该双曲线的渐近线为______14.已知点为椭圆上的动点,为圆的任意一条直径,则的最大值是__________15.已知函数,数列是正项等比数列,且,则__________16.已知命题:方程表示焦点在轴上的椭圆;命题:方程表示双曲线.若为真,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线,圆.(1)证明:直线l与圆C相交;(2)设l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为,在点B处的切线为,与的交点为Q.试探究:当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.18.(12分)已知椭圆的左焦点为,上顶点为,直线与椭圆的另一个交点为A(1)求点A的坐标;(2)过点且斜率为的直线与椭圆交于,两点(均与A,不重合),过点与轴垂直的直线分别交直线,于点,,证明:点,关于轴对称19.(12分)已知数列是等差数列,其前n项和为,,,数列满足(且),.(1)求和的通项公式;(2)求数列的前n项和.20.(12分)已知数列满足,数列为等差数列,,前4项和.(1)求数列,的通项公式;(2)求和:.21.(12分)已知直线l:x-y+2=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切(1)求该圆的方程;(2)若直线x+my-1=0与圆C交于A、B两点,且|AB|=,求m的值22.(10分)已知函数.(1)当时,不等式恒成立,求实数的取值范围;(2)解关于的不等式:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求出圆心到直线的距离为,由此可知当圆的半径为时,圆上恰有三点到直线的距离为,当圆的半径时,圆上恰有四个点到直线的距离为,故半径的取值范围是,即可求出答案.【详解】由已知条件得的圆心坐标为,圆心到直线为,∵圆上至少有三个点到直线的距离为1,∴圆的半径的取值范围是,即,即半径的取值范围是.故选:.2、D【解析】根据命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识一一判断可得答案.【详解】解:A,由原命题与逆否命题的构成关系,可知A正确;B,当a=2>1时,函数在定义域内是单调递增函数,当函数定义域内是单调递增函数时,a>1.所以B正确;C,由于存在性命题的否定是全称命题,所以",使得"的否定是",均有,所以C正确;D,的根不一定是极值点,例如:函数,则=0,即x=0就不是极值点,所以“若为的极值点,则”的逆命题为假命题,故选D.【点睛】本题主要考查命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识,需牢记并灵活运用相关知识.3、B【解析】将点的坐标代入抛物线的方程,求出的值,可求得抛物线的方程,求出的坐标,分析可知点的轨迹是以点为圆心,半径为的圆,利用圆的几何性质可求得点与原点间的距离的最小值.【详解】将点的坐标代入抛物线的方程得,可得,故抛物线的方程为,易知点,由中垂线的性质可得,则点的轨迹是以点为圆心,半径为的圆,故点的轨迹方程为,如下图所示:由图可知,当点、、三点共线且在线段上时,取最小值,且.故选:B.4、C【解析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时取等号,的最小值为6,故选:C【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力5、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有无数多个点到的距离相等,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有无数多个点到的距离相等”是“”的必要不充分条件.故选:B.6、A【解析】建立空间直角坐标系,求得平面的一个法向量为,易知平面的一个法向量为,由求解.【详解】建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为,则,即,令,则,易知平面的一个法向量为,所以,所以平面与平面所成的锐二面角的余弦值为,故选:A7、B【解析】根据题意可知等差数列是,单调递减数列,其中,由此可知,据此即可求出结果.【详解】在等差数列中,所以,所以,即,又等差数列中,公差,所以等差数列是单调递减数列,所以,所以等差数列的前项和为取得最大值,则的值为7或8.故选:B.8、A【解析】根据过定点的直线系求出恒过点可判断B,由点与圆的位置关系可判断A,由直线方程可判断CD.【详解】直线可化为,令,,解得,,所以直线恒过定点,而该定点在圆C:内部,所以必与该圆相交当时,直线方程为,故斜率为0,当时,直线方程为,故斜率为,倾斜角为135°.故选:A9、B【解析】举反例判断A,解一元二次不等式确定B,由导数的运算法则求导判断C,利用逆否命题判断D【详解】显然不是的解,A错;,B正确;,,C错;命题“若,则或”的逆否命题是:若且,则,是真命题,原命题也是真命题,D正确真命题个数2.故选:B10、D【解析】原不等式等价于,根据的图象判断函数的单调性,可得和的解集,再分情况或解不等式即可求解.【详解】由函数的图象可知:在和上单调递增,在上单调递减,所以当时,;当时,;由可得,所以或,即或,解得:或,所以原不等式的解集为:,故选:D.11、B【解析】由,则结合已知条件及模长公式即可求解.【详解】解:,所以,所以,故选:B.12、A【解析】根据将最小值问题转化为d取得最大值问题,然后结合图形可解.【详解】将,变形为,故直线恒过点,圆心,半径,已知点P在圆内,过点作直线与圆相交于A,两点,记圆心到直线的距离为d,则,所以当d取得最大值时,有最小值,结合图形易知,当直线与线段垂直的时候,d取得最大值,即取得最小值,此时,所以.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件求出两曲线的共同焦点,再由椭圆、双曲线定义求出a,b即可计算作答.【详解】椭圆的焦点,由椭圆、双曲线的对称性不妨令点P在第一象限,因为等腰三角形,由椭圆的定义知:,则,,由双曲线定义知:,即,,,所以双曲线的渐近线为:.故答案为:【点睛】易错点睛:双曲线(a>0,b>0)渐近线方程为,而双曲线(a>0,b>0)的渐近线方程为(即),应注意其区别与联系.14、【解析】设点,则且,计算得出,再利用二次函数的基本性质即可求得的最大值.【详解】解:圆的圆心为,半径长为,设点,由点为椭圆上的动点,可得:且,由为圆的任意一条直径可得:,,,,,当时,取得最大值,即.故答案为:.15、##9.5【解析】根据给定条件计算当时,的值,再结合等比数列性质计算作答.【详解】函数,当时,,因数列是正项等比数列,且,则,,同理,令,又,则有,,所以.故答案为:16、【解析】既然为真,那么就是为真,即p是假,并且q是真,根据椭圆和双曲线的定义即可解出。【详解】∵为真,∴p为假,q为真;考虑p为真的情况:解得……①;由于p为假,∴或;由于q为真,∴,即……②;由①和②得:;故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)点Q恒在直线上,理由见解析.【解析】(1)求出直线过定点,得到在圆内部,故证明直线l与圆C相交;(2)设出点,利用垂直得到等量关系,整理后即为轨迹方程;(3)利用Q、A、B、C四点共圆,得到此圆方程,联立,求出相交弦的方程,即直线的方程,根据直线过的定点,得到,从而得到点Q恒在直线上.【小问1详解】证明:直线过定点,代入得:,故在圆内,故直线l与圆C相交;【小问2详解】圆的圆心为,设点,由垂径定理得:,即,化简得:,点M的轨迹方程为:【小问3详解】设点,由题意得:Q、A、B、C四点共圆,且圆的方程为:,即,与圆C的方程联立,消去二次项得:,即为直线的方程,因为直线过定点,所以,解得:,所以当m变化时,点Q恒在直线上.【点睛】本题的第三问是稍有难度的,处理方法是根据四点共圆,直径的端点坐标,求出此圆的方程,与曲线联立后得到相交弦的方程,是处理此类问题的关键.18、(1)(2)证明见解析【解析】(1)先求出直线的方程,联立直线与椭圆,求出A点坐标;(2)设出直线方程,联立椭圆方程,用韦达定理得到两根之和,两根之积,求出两点的纵坐标,证明出,即可证明关于轴对称.【小问1详解】由题意得,,所以直线方程为,与椭圆方程联立得解得或,当时,,所以【小问2详解】设,,的方程为,联立消去得,则,直线的方程为,设,则,直线的方程为,设,则,因为,即,所以点,关于轴对称19、(1),;(2).【解析】(1)根据,列方程组即可求解数列的通项公式,根据可求数列的通项公式;(2)化简,利用裂项相消法求该数列前n项和.【小问1详解】设等差数列公差为d,∵,∴,∵公差,∴.由得,即,∴数列是首项为,公比为2的等比数列,∴;【小问2详解】∵,∴,.20、(1),;(2).【解析】(1)根据等比数列的定义,结合等差数列的基本量,即可容易求得数列,的通项公式;(2)根据(1)中所求,构造数列,证明其为等比数列,利用等比数列的前项和即可求得结果.【小问1详解】因为数列满足,故可得数列为等比数列,且公比,则;数列为等差数列,,前4项和,设其公差为,故可得,解得,则;综上所述,,.【小问2详解】由(1)可知:,,故,又,又,则是首项1,公比为的等比数列;则.21、(1)(2)0【解析】(1)设出圆心坐标,利用题干条件得到方程,求出,从而求出该圆的方程;(2)利用点到直线距离公式及垂径定理进行求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论