版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MckunseyDigital
McKinseyAnalytics
Globalsurvey:ThestateofAIin2020
Sinceour2019survey,artificialintelligencehasbecomemoreofarevenuedriver.CompaniesearningthemostfromAIplantoinvestevenmoreinresponsetoCOVID-19—andperhapswidenthegapwithothers.
ImagebyDarbyFilms
November2020
Theresultsofthisyear’sMcKinseyGlobal
Surveyonartificialintelligence(AI)suggestthatorganizationsareusingAIasatoolforgeneratingvalue.Increasingly,thatvalueiscomingintheformofrevenues.Asmallcontingentofrespondents
comingfromavarietyofindustriesattribute
20percentormoreoftheirorganizations’
earningsbeforeinterestandtaxes(EBIT)toAI.
ThesecompaniesplantoinvestevenmoreinAI
inresponsetotheCOVID-19pandemicandits
accelerationofallthingsdigital.Thiscouldcreate
awiderdividebetweenAIleadersandthemajorityofcompaniesstillstrugglingtocapitalizeonthe
technology;however,theseleadersengageina
numberofpracticesthatcouldofferhelpfulhintsforsuccess.Andwhilecompaniesoverallaremaking
someprogressinmitigatingtherisksofAI,moststillhavealongwaytogo.
AIadoptionandimpact
WhilethelatestfindingsshownoincreaseinAIadoption,somecompaniesarecapturingvaluefromAIattheenterpriselevel,andmanyare
generatingrevenueandcostreductionsatleastatthefunctionlevel.
Overall,halfofrespondentssaytheirorganizationshaveadoptedAIinatleastonefunction.1Andwhile
AIadoptionwasaboutequalacrossregionslast
year,thisyear’srespondentsworkingforcompanieswithheadquartersinLatinAmericancountriesandinotherdevelopingcountriesaremuchlesslikely
thanthoseelsewheretoreportthattheircompanieshaveembeddedAIintoaprocessorproductinat
leastonefunctionorbusinessunit.Byindustry,
respondentsinthehigh-techandtelecomsectors2areagainthemostlikelytoreportAIadoption,withtheautomotiveandassemblysectorfallingjust
behindthem(downfromsharingtheleadlastyear).
Thebusinessfunctionsinwhichorganizations
adoptAIremainlargelyunchangedfromthe2019
survey,withserviceoperations,productorservicedevelopment,andmarketingandsalesagaintakingthetopspots(Exhibit1).
Withinthesefunctions,thelargestsharesof
respondentsreportrevenueincreasesforinventoryandpartsoptimization,pricingandpromotion,
customer-serviceanalytics,andsalesanddemandforecasting.Morethantwo-thirdsofrespondents
whoreportadoptingeachofthoseusecasessay
itsadoptionincreasedrevenue.Theusecases
thatmostcommonlyledtocostdecreasesare
optimizationoftalentmanagement,contact-centerautomation,andwarehouseautomation.OverhalfofrespondentswhoreportadoptingeachofthosesaytheuseofAIinthoseareasreducedcosts.
ofrespondentsreportthattheircompanieshaveadoptedAIinatleastonebusinessfunction.
1Inthe2019survey,weaskedaboutcompanies’AIadoptiondifferently,and58percentofrespondentssaidthattheircompanieshadembeddedAIinatleastonefunctionorbusinessunit.
2Thehigh-techandtelecomsectorsincluderespondentswhosaytheyworkinbroadbandcommunication,callcenters,hardware,internetandonlineservices,ITservices,sales,software,telecomequipment,telecomregulation,wiredtelecommunications,andwirelesscommunications.
2Globalsurvey:ThestateofAIin2020
Globalsurvey:ThestateofAIin20203
Exhibit1
AIadoptionishighestwithintheproduct-orservice-developmentandservice-operationsfunctions.
AIusecasesmostcommonlyadoptedwithineachbusinessfunction,%ofrespondents
Productand/orservicedevelopment
Manufacturing
NewAI-basedenhancementsofproducts1
24
Yield,energy,and/orthroughputoptimization15
Product-featureoptimization
21
Predictivemaintenance
12
Serviceoperations
Humanresources
Service-operationsoptimization
24
Optimizationoftalentmanagement2
10
Predictiveserviceandinterventions
19
Performancemanagement
7
Marketingandsales
Supply-chainmanagement
Customer-serviceanalytics
17
Logistics-networkoptimization
9
Customersegmentation
Inventoryandpartsoptimization
14
9
Risk
Strategyandcorporatefinance
Riskmodelingandanalytics
16
Capitalallocation
8
Fraudanddebtanalytics
M&Asupport
12
6
1Ie,addingentirelynewfeaturestoexistingproducts.2Eg,recruiting,retention.
ThesurveyfindingsshowthatsomecompaniesusingAIareseeingthatvalueaccruetotheenterpriselevel.Twenty-twopercentofrespondentssaythatmore
than5percentoftheirorganizations’enterprise-wideEBITin2019wasattributabletotheiruseofAI,with
48percentreportinglessthan5percent.
Additionally,inhalfofbusinessfunctions,alarger
shareofrespondentsreportrevenueincreasesfromAIusethanintheprevioussurvey,whilerevenuein
mostotherfunctionsremainedstable(Exhibit2).Atthesametime,costdecreaseshavebecomeless
commoninmostfunctions.3
3Respondentswereaskedaboutrevenuesandcostsforthepreviousyear.
Exhibit2
RevenueincreasesfromAIadoptionhavebecomemorecommonovertime,whilecostdecreaseshavebecomelesscommon.
RevenueincreasefromAIadoptioninthepreviousyear,byamount,1%ofrespondents
Increaseamount
≤5%6–10%>10%
FY2018FY2019
43261079
36241373
3826872
43181071
33161968
30191665
25191357
35111056
Marketingandsales40301080
Strategyandcorporatefinance2724859
Supply-chainmanagement28221363
Manufacturing34131461
Risk28161357
Productand/orservicedevelopment31211971
Serviceoperations31141560
Humanresources20231255
36201066
Averageacrossallactivities31201263
CostdecreasefromAIadoptioninthepreviousyear,byamount,1%ofrespondents
FY2018
Decreaseamount
≥20%10–19%<10%
93
20
18
16
12
32
5556
44
50616
28
384
2127
51417
30
4328
33
FY2019
362925
Marketingandsales3641319
Strategyandcorporatefinance50151124
Supply-chainmanagement61141631
Manufacturing
641314
37
Risk
54716
31
Productand/orservicedevelopment
296
1013
Serviceoperations
511117
23
Humanresources
55622
27
4041125
Averageacrossallactivities4461325
1QuestionwasaskedonlyofrespondentswhosaidtheircompaniesadoptedAIinagivenfunction.Respondentswhosaid“nochange”arenotshown.
Thisyearweaskedaboutadoptionofdeep
learning—atypeofmachinelearningthatuses
neuralnetworksandcansometimesdeliversuperiorresults—forthefirsttime.Just16percentof
respondentssaytheircompanieshavetakendeep
learningbeyondthepilotingstage.Onceagain,high-techandtelecomcompaniesareleadingthecharge,with30percentofrespondentsfromthosesectorssayingtheircompanieshaveembeddeddeep-
learningcapabilities.
Globalsurvey:ThestateofAIin2020
4
McKinseyCommentary
MichaelChui,partner,
McKinseyGlobalInstitute,SanFrancisco
It’salsoclearthatwe’restillintheearly
daysofAIuseinbusiness,withlessthanaquarterofrespondentsseeingsignificantbottom-lineimpact.Thisisn’tsurprising—achievingimpactatscaleisstillelusive
formanycompaniesnotonlybecauseofthetechnicalchallengesbutalsobecauseoftheorganizationalchangesrequired.
However,thoseseeingAIcontributemorethan20percenttoearningsbeforeinterestandtaxesarenotjustfromthetechsector.Soitispossibleforanycompanytogeta
goodamountofvaluefromAIifit’sappliedeffectivelyinarepeatableway.
Mostcompaniesseemtoagree,withthe
resultsshowinganappetitetocontinue
investinginthetechnology.However,therewasabitofadecreaseinbullishnessthis
year,perhapsreflectingthepassingofAI’shypephase.WedothinkAIisworththeinvestment,butitrequireseffectiveexecutiontogeneratesignificantvalue,particularlyatenterprisescale.
Whatwe’vesaidinthepastabout
“followingthemoney”tofindwhereAIaddsvalueinorganizationsstillholdstrue.At
theindustrylevel,companiescontinuetouseAIinareasthataremostfundamentaltowherevalueisgeneratedineachsector.And,overall,manycompaniesfocused
ongrowthin2019(weaskedaboutlast
year’srevenueandcosteffectsfromAI);
forthatreason,it’slikelythatwesawmorecompaniesdrivingrevenueswithAIratherthandecreasingtheircosts—notbecauseAIcan’teffectivelyreducecosts.
Whatseparatesthebestfromtherest
Companiesseeingthehighestbottom-lineimpactfromAIexhibitoverallorganizationalstrengthandengageinaclearsetofcore
bestpractices.
Thecompaniesseeingthemostvaluefromtheir
useofAI—thatis,respondentswhosay20percentormoreofenterprise-wideEBITin2019was
attributabletotheirAIuse—reportseveralstrengthsthatsetthemapartfromotherrespondents4:
—Betteroverallperformance.Thefindings
suggestthatcompaniesseeingmoreEBIT
contributionfromAIexperiencebetteryear-over-yeargrowthoverallthandoothercompanies.
Respondentsathigh-performingcompaniesarenearlytwiceaslikelyasotherstoreportEBIT
growthin2019of10percentormore.
—Betteroverallleadership.Respondentsat
AIhighperformersratetheirC-suiteasvery
effectivemoreoftenthanotherrespondentsdo.Theyalsoaremuchmorelikelythanothersto
saythattheirAIinitiativeshaveanengagedandknowledgeablechampionintheC-suite.
—ResourcecommitmenttoAI.Responsesshow
thatAIhighperformersinvestmoreoftheir
digitalbudgetsinAIthantheircounterpartsandaremorelikelytoincreasetheirAIinvestments
inthenextthreeyears.Highperformersalso
tendtohavetheabilitytodevelopAIsolutions
in-house—asopposedtopurchasingsolutions—andtheytypicallyemploymoreAI-relatedtalent,suchasdataengineers,dataarchitects,and
translators,thandotheircounterparts.They
alsoaremuchmorelikelythanotherstosaytheircompanieshavebuiltastandardizedend-to-
endplatformforAI-relateddatascience,dataengineering,andapplicationdevelopment.
4AllquestionsaboutAI-relatedstrengthsandpracticeswereaskedonlyofrespondentswhosaidtheirorganizationshadadoptedAIinatleastonefunction,n=1,151.
Globalsurvey:ThestateofAIin2020
5
Thisyearweagainlookedatabroadsetofcompanies’AI-relatedpractices,thistimeexaminingabout
twiceasmany,toseewhichmightcorrespondwithcapturingmorevaluefromAI.TheorganizationswiththehighestEBITattributabletoAIweremorelikelytoengageinnearlyeverypracticethanthoseseeinglessvaluefromAI.Thesepracticesgenerallyaligntosixcategories:strategy;talentandleadership;waysofworking;models,tools,andtechnology;data;andadoption(Exhibit3).
Butafewpracticesareadoptedataboutthesamelevelbyallcompanies:forexample,usingtest-and-learnmethodologiestorunrapiditerationsinAI
initiatives,puttingprocessesinplacetocapture
businessfeedback,anddefiningclustersofAIusecasesinprioritybusinessunits,functions,orotherareasofbusinessactivity.
Exhibit3
Sixsetsofpracticesdifferentiatehigh-performingcompaniesfromothers,withasubsetadoptedmuchmoreoftenbytheseleaders.
Shareofrespondentsreportingtheirorganizationsengageineachpractice,%ofrespondents1
Strategy
HavearoadmapclearlyprioritizingAIinitiativeslinkedtobusinessvalueacrossorganization
AIhighperformers
55%
Allotherrespondents
29%
HaveaclearlydefinedAIvisionandstrategy
43%
17%
Seniormanagementisfullyalignedandcommittedto
organization’sAIstrategy
60%
34%
HaveanactiveprogramtodevelopandmanageanextensiverangeofAIecosystempartnerships(eg,withcompanies,academia)
43%
28%
AIstrategythatalignswiththebroadercorporatestrategy
Talentandleadership
TechprofessionalsdevelopAIskillsthroughtailoredcurriculumsbyroleandprogressalongdefinedcareertrajectories
53%
40%
42%
15%
Anappointed,credibleleaderisempoweredtomoveAIinitiatives
forwardincollaborationwithpeersacrossbusinessunitsandfunctions
52%
32%
Strong,centralizedcoordinationofAIinitiativesisbalancedwithcloseconnectivitytoendusersinthebusiness
42%
25%
AItalentisefectivelyrecruitedandonboarded
36%
21%
TypeofAItalentneeded(eg,byroleandskilllevel)tosupportAIinitiativesisunderstood
Waysofworking
FeelcomfortabletakingriskswithAI-relatedinvestmentdecisions
45%
65%
33%
31%
Useadvancedprocesses(eg,dataoperations,microservices)todeployAI
57%
23%
HaveaclearframeworkforAIgovernancethatcoversallstepsofthemodel-developmentprocessandmanagesAI-relatedrisks
42%
14%
Usedesignthinking,involvingtheenduserindevelopmentofAItools
56%
38%
AI-developmentteamsacrosstheorganizationfollowastandardprotocoltobuildanddeliverAItools
33%
16%
Globalsurvey:ThestateofAIin2020
6
Exhibit3(continued)
Sixsetsofpracticesdifferentiatehigh-performingcompaniesfromothers,withasubsetadoptedmuchmoreoftenbytheseleaders.
Shareofrespondentsreportingtheirorganizationsengageineachpractice,%ofrespondents1
Models,tools,andtechnology
HavestandardtoolframeworksanddevelopmentprocessesinplacefordevelopingAImodels
AIhighperformers
51%
Allotherrespondents
19%
UnderstandhowfrequentlyAImodelsneedtobeupdated,andrefreshthembasedonclearlydefinedcriteria
45%
15%
UseautomatedtoolstoproduceandtestAImodels
48%
20%
TrackAI-modelperformanceandexplanationstoensurethatoutcomesand/ormodelsimproveovertime
53%
29%
Useastandardizedtoolsettocreateproduction-readydatapipelines
44%
23%
Ownahigh-performancecomputingclusterforAIworkloads
37%
16%
Useastandardizedend-to-endplatformforAI-relateddatascience,dataengineering,andapplicationdevelopment
Data
GeneratesyntheticdatatotrainAImodelswhenthereareinsu代cientnaturaldatasets
40%
49%
20%
16%
RapidlyintegrateinternalstructureddatatouseinAIinitiatives
56%
28%
Havewell-definedgovernanceprocessesinplaceforkeydata-relateddecisions
43%
21%
HavescalableinternalprocessesforlabelingAItrainingdata
39%
18%
Protocolsareinplacetoensureappropriatelevelsofdataquality
48%
29%
Adatadictionary(ie,ametadatarepository)describesthefeaturesofdatathatareaccessibleacrosstheenterprise
40%
23%
AcleardatastrategysupportsandenablesAI
Adoption
Entireorganizationconsistentlyadherestotheexecution
processesidentifiedasessentialtocapturingvaluefromAI
44%
57%
31%
17%
SystematicallytrackacomprehensivesetofkeyperformanceindicatorstomeasuretheimpactofAIinitiatives
52%
27%
Capabilitiesaredesignedforscalability,andAIinitiativesarefullyscaledwithinbusinessunitsand/orcompany-wide
52%
32%
HaveacomprehensiveprocessformovingAIsolutionsfrompilottoproduction
52%
34%
EnactefectivechangemanagementtoensureAIadoption(eg,byhavingleadersmodelbehaviors)
44%
28%
1PracticesshownherearerepresentativeofthosewiththehighestdeltasbetweenAIhighperformersandotherrespondents.Notallpracticesaskedaboutareshown.
Globalsurvey:ThestateofAIin2020
7
McKinseyCommentary
BryceHall,associatepartner,Washington,DC
orheavilycustomizetheirAIcapabilities
in-house.ManyexecutivesnowrealizethatAIsolutionstypicallyneedtobedevelopedoradaptedinclosecollaborationwithbusi-nessuserstoaddressrealbusinessneedsandenableadoption,scale,andrealvaluecreation.Asaresult,weseecompanies
increasinglydevelopingabenchofAI
talentandlaunchingtrainingprogramstoraisetheoverallanalyticsacumenacrosstheirorganizations.
Oneofthemostremarkablepatterns
It’salsostrikingthatsomeofthebiggest
gapsbetweenAIhighperformersand
othersaren’tonlyintechnicalareas,suchasusingcomplexAI-modelingtechniques,butalsointhehumanaspectsofAI,suchasthealignmentofseniorexecutives
aroundAIstrategyandadoptionof
standardexecutionprocessestoscaleAIacrossanorganization.
Finally,weseeathemeintheseresultsthatweseeinmuchofourworkwith
companies:higherperformersdevelop
weseeinthesefindingsistheadoptionofcorepracticesamongcompaniescapturingvaluefromAI.Therereallyisa“playbook”
forsuccess.It’sencouragingtoseealargerproportionoforganizationsthisyeardoingmoreinfoundationalareas,butmanystill
arenot.Weseecompanies,forexample,
stillspendingdisproportionatetime
cleaningandintegratingdata,notfollow-ingstandardprotocolstobuildAItools,orrunning“shinyobject”analysesnottiedtobusinessvalue.
Ontheground
Puttingbestpracticestowork
Seniorexecutivesatcompaniesmaking
progressinAIadoptiontellMcKinseyin
interviewsthattheyarefindingmanyoftheleadingpracticesessential.
Onstrategy
“Thisprogramwasoriginatedbottom-up
bythebusiness,andtheCEOhasbecomeasupporter,seeingthisverymuchasa
strategicopportunity.”
–HeadofAI,data,andanalyticsataglobaloilandgascompany
“Investmentdecisionsaremadebythe
managementboard.Sowheneverwehaveimplementedausecase,wemakesurethatthebusinessteamisreportingitintothe
boardtoprovidetransparencyonresultsandwhyweshouldexpandourefforts.”
–Analyticsleaderataglobalbank
Ontalentandleadership
“Weareinvestingquiteheavilyintalent
upskilling.Ifyouhaveaworkforceoftensofthousandsofpeople,youhavetothinkabouthowtomovethisentireworkforceforward.
That’swhywearedoingthisattwolevels:
one,partneringwithaleadingtechnology
companyonimprovingthedataandAIskillsofpractitionersand,two,improvingthe
skillsandunderstandingofAIamongseniormanagementwithdedicatedcourses.”
–Analyticsleaderataglobalbank
Onadoption
“Buildingthetechnologytookusmuchlesstimethanalignmentandgettingpeople
toadoptit.Whileleadershipgenerally
believesinthiswork,youneedtoprovide
themwithdetailsonwhattheworkwill
actuallyentail,howitwillchangetheirpartofthebusiness,andhowitwillmakelifefortheirassociateseasier.Thesameneedstobedonewithemployees.Ourexperience
isthatitisn’tenoughto‘trainandexplain.’We’vefounditveryusefultobringthe
associateswhoareexpertsintheapplica-tiondomainintothebuildofthesolution.”
–Headofanalyticsandinsightsataglobalpharmaceuticalcompany
Globalsurvey:ThestateofAIin2020
8
ManagingAIrisks
Whilemanycompaniesstillaren’tacknowledgingmostAIrisks,theymodestlyincreased
mitigatingahandfulofthem.
Thesurveyfindingssuggestthataminorityof
companiesrecognizemanyoftherisksofAIuse,andfewerareworkingtoreducetherisks—aswastrue
in2019.Cybersecurityremainstheonlyriskthat
amajorityofrespondentssaytheirorganizations
considerrelevant.Overall,theshareofrespondentscitingeachriskasrelevanthasremainedflat5orhasdecreased,withtheexceptionofnationalsecurity.
Yetsomeofthelesscommonlyconsideredrisks
aretheonesinwhichweseeincreasingmitigation.Nationalsecurityandphysicalsafetyaremore
commonlyaddressednowthanin2019.ResponsesalsoindicatethatcompaniesincreasinglymanagerisksrelatedtoAIexplainability.
Highperformersremainmorelikelythanotherstorecognizeandmitigatemostrisks(Exhibit4).
Forexample,respondentsathighperformers
are2.6timesmorelikelythanotherstosaytheir
organizationsaremanagingequityandfairnessriskssuchasunwantedbiasinAI-drivendecisions.
Exhibit4
Alargershareofrespondentsthanlastyearsaytheirorganizationsareactivelyworkingtomitigaterisksthatarenotcommonlyconsideredrelevant.
Risksthatorganizationsconsiderrelevantandrisksthat2019
organizationsareworkingtomitigate,1%ofrespondents2020
48
51
35
38
30
30
19
25
19
22
17
19
13
14
11
15
4
10
4
2
RelevantrisksMitigatedrisks
Cybersecurity
62
62
Regulatorycompliance
50
48
Personal/individualprivacy
45
39
Explainability2
39
41
34
Organizationalreputation
31
Workforce/labordisplacement
31
35
Equityandfairness
26
24
Physicalsafety
16
19
9
Nationalsecurity
15
Politicalstability
7
9
1QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshadadoptedAIinatleastonebusinessfunction;n=1,151.Respondentswhosaid“don'tknow/notapplicable”arenotshown.
2Ie,theabilitytoexplainhowAImodelscometotheirdecisions.
5Thatis,thechangefromtheprioryearwasnotstatisticallysignificant.
Globalsurvey:ThestateofAIin2020
9
McKinseyCommentary
RogerBurkhardt,partner,NewYork
GeneralDataProtectionRegulation[GDPR]andtheCaliforniaConsumerPrivacyAct
[CCPA])thataffectanumberofindustriesaswellasanincreasedawarenessof
advancesinexplainabilitytechniques.
Overall,however,theresultsare
concerning.Whilesomerisks,suchas
physicalsafety,applytoonlyparticular
industries,it’sdifficulttounderstandwhyuniversalrisksaren’trecognizedbyamuchhigherproportionofrespondents.Cyber-securityisrelevantforanyorganization
It’sencouragingtoseetheincreasein
recognitionofrisksarisingfromalackof
explainability,meaningtheinabilityto
understandthedriversofacomplexAI
model’spredictions.Theindustry-level
datashowthatnotonlyarehealthcareandfinancialservicesleadinghere,whichis
expectedbecausethoseindustriesare
moreregulated,butalsohightechand
business,legal,andprofessionalservices.SomeofthejumpinmitigationofthisriskcouldbedrivenbyregulationsinEurope
andtheUnitedStates(forexample,the
usinganytypeofdeviceconnectedtothe
internet,andattackshaverisensignificantlyduringthepandemic,whichhasdrivenevenmorebusinessandcommerceonline.And
whileequityandfairnesscanbetrickyto
solvefor,itshouldbeonthelistofrelevantconcernsfororganizationsinanyindustry.It’sparticularlysurprisingtoseelittleim-
provementintherecognitionandmitigationofthisriskgiventheattentiontoracial
biasandotherexamplesofdiscriminatorytreatmentsuchasage-basedtargetinginjobadvertisementsonsocialmedia.
Ontheground
AglobalcommoditiesproducerincreasesAIadoptionwithexplainability
needtofeelconfidentthatthereasoning
behindthedecisionissoundandsafe.Thematerialsmanufacturerusesthesimplest
andmosttransparentmodelspossibleto
enableexplainability,whichhasgonea
longwayinmakingworkersconfidentandexcitedtousenewAIapplications.Italso
hasimprovedoperations,contributingtoa15percentupliftinearningsbeforeinterest,taxes,depreciation,andamortization
throughAIandanalyticsinitiatives.
Alackofmodelexplainabilitypresents
alevelofriskinnearlyeveryindustry.In
someareas,likehealthcare,thestakes
areparticularlyhighwhenAIcouldbe
presentingarecommendationforpatientcare.Infinancialservices,regulators
mayneedtoknowwhyanorganizationis
makingparticulardecisions—onlending,forexample.Butexplainabilitycanpresentanotherrisk:lackofAIadoption,leadingtowastedinvestmentandtheriskoffalling
behindthecompetition.InaninterviewwithMcKinsey,theheadofAItransformationataglobalmaterialsmanufacturernotesthatwithoutanexplainablemodel,adoption
byfrontlineworkersisnearlyimpossible.
WorkersneedtobeabletotrustAI’s
judgmentnotonlyforthesakeoftaking
themostefficientactionbutalsofortheirphysicalsafety.Whenatoolrecommendsrunningapieceofpotentiallydangerous
heavyequipmentinacertainway,workers
Globalsurvey:ThestateofAIin2020
10
TheCOVID-19effect
Despitetheeconomicchallengesthatpandemic-mitigationmeasureshavecausedformany
companies,thoseseeingthemostvaluefromAIaredoublingdownonthetechnology.
ThecompaniesseeingsignificantvaluefromAI
arecontinuingtoinvestinitduringthepandemic.
Mostrespondentsathighperformerssaytheir
organizationshaveincreasedinvestmentinAIineachmajorbusinessfunctioninresponsetothepandemic,whilelessthan30percentofotherrespondents
saythesame(Exhibit5).Byindustry,respondentsinautomotiveandassemblyaswellasinhealthcare
andpharmaarethemostlikelytosaytheircompanieshaveincreasedinvestment.
Generally,respondentsfromcompaniesthathave
adoptedmoreAIcapabilitiesaremorelikelytoreportseeingAImodelsmisperformamidtheCOVID-19
pandemicthanothersare.Responsesindicate
thathigh-performingorganizations,whichtendtohaveadoptedmoreAIcapabilitiesthanothers,arewitnessingmoremisperformancethancompaniesseeinglessvaluefromAI.Thesehigh-performing
organizations’modelswereparticularlyvulnerablewithinmarketingandsales,productdevelopment,andserviceoperations(Exhibit6)—theareaswhereAIadoptionismostcommonlyreported.
Exhibit5
Mosthigh-performingcompanieshaveincreasedtheirinvestmentinAIamidtheCOVID-19crisis,thoughthechangesvarybyindustry.
AveragechangeinAIinvestmentacrossbusinessfunctionsbecauseofCOVID-19pandemic,%ofrespondentsreportingadoptionofAI
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古树保护条例课件
- 检查督查方式不合理处理意见建议
- 河南省新乡市辉县市第一民族学校2025-2026学年八年级上学期阶段性期末评价历史试题(含答案)
- 2025-2026学年辽宁省调兵山市第二高级中学高二上学期1月期末英语试卷
- 2025年上林县幼儿园教师招教考试备考题库及答案解析(必刷)
- 2025年宁夏工商职业技术学院单招职业技能测试题库带答案解析
- 2024年郑州亚欧交通职业学院马克思主义基本原理概论期末考试题含答案解析(必刷)
- 2025年怀来县幼儿园教师招教考试备考题库附答案解析(夺冠)
- 2024年重庆医药高等专科学校马克思主义基本原理概论期末考试题及答案解析(夺冠)
- 2025年丽水职业技术学院马克思主义基本原理概论期末考试模拟题及答案解析(必刷)
- GB/T 46878-2025二氧化碳捕集、运输和地质封存地质封存
- 雷波县粮油贸易总公司 2026年面向社会公开招聘备考考试试题及答案解析
- 疗养院员工劳动保护制度
- 2026浙江温州市苍南县城市投资集团有限公司招聘19人考试参考试题及答案解析
- 2026年广州中考化学创新题型特训试卷(附答案可下载)
- 2025司法鉴定人资格考试考点试题及答案
- 保健用品生产管理制度
- 档案计件工资管理制度
- 浙江省杭州市拱墅区2024-2025学年八年级上学期语文期末试卷(含答案)
- DB11∕T 695-2025 建筑工程资料管理规程
- 产科护理中的人文关怀与沟通艺术
评论
0/150
提交评论