mckinsey -全球调查:2020年人工智能状况 Global survey The state of AI in 2020_第1页
mckinsey -全球调查:2020年人工智能状况 Global survey The state of AI in 2020_第2页
mckinsey -全球调查:2020年人工智能状况 Global survey The state of AI in 2020_第3页
mckinsey -全球调查:2020年人工智能状况 Global survey The state of AI in 2020_第4页
mckinsey -全球调查:2020年人工智能状况 Global survey The state of AI in 2020_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MckunseyDigital

McKinseyAnalytics

Globalsurvey:ThestateofAIin2020

Sinceour2019survey,artificialintelligencehasbecomemoreofarevenuedriver.CompaniesearningthemostfromAIplantoinvestevenmoreinresponsetoCOVID-19—andperhapswidenthegapwithothers.

ImagebyDarbyFilms

November2020

Theresultsofthisyear’sMcKinseyGlobal

Surveyonartificialintelligence(AI)suggestthatorganizationsareusingAIasatoolforgeneratingvalue.Increasingly,thatvalueiscomingintheformofrevenues.Asmallcontingentofrespondents

comingfromavarietyofindustriesattribute

20percentormoreoftheirorganizations’

earningsbeforeinterestandtaxes(EBIT)toAI.

ThesecompaniesplantoinvestevenmoreinAI

inresponsetotheCOVID-19pandemicandits

accelerationofallthingsdigital.Thiscouldcreate

awiderdividebetweenAIleadersandthemajorityofcompaniesstillstrugglingtocapitalizeonthe

technology;however,theseleadersengageina

numberofpracticesthatcouldofferhelpfulhintsforsuccess.Andwhilecompaniesoverallaremaking

someprogressinmitigatingtherisksofAI,moststillhavealongwaytogo.

AIadoptionandimpact

WhilethelatestfindingsshownoincreaseinAIadoption,somecompaniesarecapturingvaluefromAIattheenterpriselevel,andmanyare

generatingrevenueandcostreductionsatleastatthefunctionlevel.

Overall,halfofrespondentssaytheirorganizationshaveadoptedAIinatleastonefunction.1Andwhile

AIadoptionwasaboutequalacrossregionslast

year,thisyear’srespondentsworkingforcompanieswithheadquartersinLatinAmericancountriesandinotherdevelopingcountriesaremuchlesslikely

thanthoseelsewheretoreportthattheircompanieshaveembeddedAIintoaprocessorproductinat

leastonefunctionorbusinessunit.Byindustry,

respondentsinthehigh-techandtelecomsectors2areagainthemostlikelytoreportAIadoption,withtheautomotiveandassemblysectorfallingjust

behindthem(downfromsharingtheleadlastyear).

Thebusinessfunctionsinwhichorganizations

adoptAIremainlargelyunchangedfromthe2019

survey,withserviceoperations,productorservicedevelopment,andmarketingandsalesagaintakingthetopspots(Exhibit1).

Withinthesefunctions,thelargestsharesof

respondentsreportrevenueincreasesforinventoryandpartsoptimization,pricingandpromotion,

customer-serviceanalytics,andsalesanddemandforecasting.Morethantwo-thirdsofrespondents

whoreportadoptingeachofthoseusecasessay

itsadoptionincreasedrevenue.Theusecases

thatmostcommonlyledtocostdecreasesare

optimizationoftalentmanagement,contact-centerautomation,andwarehouseautomation.OverhalfofrespondentswhoreportadoptingeachofthosesaytheuseofAIinthoseareasreducedcosts.

ofrespondentsreportthattheircompanieshaveadoptedAIinatleastonebusinessfunction.

1Inthe2019survey,weaskedaboutcompanies’AIadoptiondifferently,and58percentofrespondentssaidthattheircompanieshadembeddedAIinatleastonefunctionorbusinessunit.

2Thehigh-techandtelecomsectorsincluderespondentswhosaytheyworkinbroadbandcommunication,callcenters,hardware,internetandonlineservices,ITservices,sales,software,telecomequipment,telecomregulation,wiredtelecommunications,andwirelesscommunications.

2Globalsurvey:ThestateofAIin2020

Globalsurvey:ThestateofAIin20203

Exhibit1

AIadoptionishighestwithintheproduct-orservice-developmentandservice-operationsfunctions.

AIusecasesmostcommonlyadoptedwithineachbusinessfunction,%ofrespondents

Productand/orservicedevelopment

Manufacturing

NewAI-basedenhancementsofproducts1

24

Yield,energy,and/orthroughputoptimization15

Product-featureoptimization

21

Predictivemaintenance

12

Serviceoperations

Humanresources

Service-operationsoptimization

24

Optimizationoftalentmanagement2

10

Predictiveserviceandinterventions

19

Performancemanagement

7

Marketingandsales

Supply-chainmanagement

Customer-serviceanalytics

17

Logistics-networkoptimization

9

Customersegmentation

Inventoryandpartsoptimization

14

9

Risk

Strategyandcorporatefinance

Riskmodelingandanalytics

16

Capitalallocation

8

Fraudanddebtanalytics

M&Asupport

12

6

1Ie,addingentirelynewfeaturestoexistingproducts.2Eg,recruiting,retention.

ThesurveyfindingsshowthatsomecompaniesusingAIareseeingthatvalueaccruetotheenterpriselevel.Twenty-twopercentofrespondentssaythatmore

than5percentoftheirorganizations’enterprise-wideEBITin2019wasattributabletotheiruseofAI,with

48percentreportinglessthan5percent.

Additionally,inhalfofbusinessfunctions,alarger

shareofrespondentsreportrevenueincreasesfromAIusethanintheprevioussurvey,whilerevenuein

mostotherfunctionsremainedstable(Exhibit2).Atthesametime,costdecreaseshavebecomeless

commoninmostfunctions.3

3Respondentswereaskedaboutrevenuesandcostsforthepreviousyear.

Exhibit2

RevenueincreasesfromAIadoptionhavebecomemorecommonovertime,whilecostdecreaseshavebecomelesscommon.

RevenueincreasefromAIadoptioninthepreviousyear,byamount,1%ofrespondents

Increaseamount

≤5%6–10%>10%

FY2018FY2019

43261079

36241373

3826872

43181071

33161968

30191665

25191357

35111056

Marketingandsales40301080

Strategyandcorporatefinance2724859

Supply-chainmanagement28221363

Manufacturing34131461

Risk28161357

Productand/orservicedevelopment31211971

Serviceoperations31141560

Humanresources20231255

36201066

Averageacrossallactivities31201263

CostdecreasefromAIadoptioninthepreviousyear,byamount,1%ofrespondents

FY2018

Decreaseamount

≥20%10–19%<10%

93

20

18

16

12

32

5556

44

50616

28

384

2127

51417

30

4328

33

FY2019

362925

Marketingandsales3641319

Strategyandcorporatefinance50151124

Supply-chainmanagement61141631

Manufacturing

641314

37

Risk

54716

31

Productand/orservicedevelopment

296

1013

Serviceoperations

511117

23

Humanresources

55622

27

4041125

Averageacrossallactivities4461325

1QuestionwasaskedonlyofrespondentswhosaidtheircompaniesadoptedAIinagivenfunction.Respondentswhosaid“nochange”arenotshown.

Thisyearweaskedaboutadoptionofdeep

learning—atypeofmachinelearningthatuses

neuralnetworksandcansometimesdeliversuperiorresults—forthefirsttime.Just16percentof

respondentssaytheircompanieshavetakendeep

learningbeyondthepilotingstage.Onceagain,high-techandtelecomcompaniesareleadingthecharge,with30percentofrespondentsfromthosesectorssayingtheircompanieshaveembeddeddeep-

learningcapabilities.

Globalsurvey:ThestateofAIin2020

4

McKinseyCommentary

MichaelChui,partner,

McKinseyGlobalInstitute,SanFrancisco

It’salsoclearthatwe’restillintheearly

daysofAIuseinbusiness,withlessthanaquarterofrespondentsseeingsignificantbottom-lineimpact.Thisisn’tsurprising—achievingimpactatscaleisstillelusive

formanycompaniesnotonlybecauseofthetechnicalchallengesbutalsobecauseoftheorganizationalchangesrequired.

However,thoseseeingAIcontributemorethan20percenttoearningsbeforeinterestandtaxesarenotjustfromthetechsector.Soitispossibleforanycompanytogeta

goodamountofvaluefromAIifit’sappliedeffectivelyinarepeatableway.

Mostcompaniesseemtoagree,withthe

resultsshowinganappetitetocontinue

investinginthetechnology.However,therewasabitofadecreaseinbullishnessthis

year,perhapsreflectingthepassingofAI’shypephase.WedothinkAIisworththeinvestment,butitrequireseffectiveexecutiontogeneratesignificantvalue,particularlyatenterprisescale.

Whatwe’vesaidinthepastabout

“followingthemoney”tofindwhereAIaddsvalueinorganizationsstillholdstrue.At

theindustrylevel,companiescontinuetouseAIinareasthataremostfundamentaltowherevalueisgeneratedineachsector.And,overall,manycompaniesfocused

ongrowthin2019(weaskedaboutlast

year’srevenueandcosteffectsfromAI);

forthatreason,it’slikelythatwesawmorecompaniesdrivingrevenueswithAIratherthandecreasingtheircosts—notbecauseAIcan’teffectivelyreducecosts.

Whatseparatesthebestfromtherest

Companiesseeingthehighestbottom-lineimpactfromAIexhibitoverallorganizationalstrengthandengageinaclearsetofcore

bestpractices.

Thecompaniesseeingthemostvaluefromtheir

useofAI—thatis,respondentswhosay20percentormoreofenterprise-wideEBITin2019was

attributabletotheirAIuse—reportseveralstrengthsthatsetthemapartfromotherrespondents4:

—Betteroverallperformance.Thefindings

suggestthatcompaniesseeingmoreEBIT

contributionfromAIexperiencebetteryear-over-yeargrowthoverallthandoothercompanies.

Respondentsathigh-performingcompaniesarenearlytwiceaslikelyasotherstoreportEBIT

growthin2019of10percentormore.

—Betteroverallleadership.Respondentsat

AIhighperformersratetheirC-suiteasvery

effectivemoreoftenthanotherrespondentsdo.Theyalsoaremuchmorelikelythanothersto

saythattheirAIinitiativeshaveanengagedandknowledgeablechampionintheC-suite.

—ResourcecommitmenttoAI.Responsesshow

thatAIhighperformersinvestmoreoftheir

digitalbudgetsinAIthantheircounterpartsandaremorelikelytoincreasetheirAIinvestments

inthenextthreeyears.Highperformersalso

tendtohavetheabilitytodevelopAIsolutions

in-house—asopposedtopurchasingsolutions—andtheytypicallyemploymoreAI-relatedtalent,suchasdataengineers,dataarchitects,and

translators,thandotheircounterparts.They

alsoaremuchmorelikelythanotherstosaytheircompanieshavebuiltastandardizedend-to-

endplatformforAI-relateddatascience,dataengineering,andapplicationdevelopment.

4AllquestionsaboutAI-relatedstrengthsandpracticeswereaskedonlyofrespondentswhosaidtheirorganizationshadadoptedAIinatleastonefunction,n=1,151.

Globalsurvey:ThestateofAIin2020

5

Thisyearweagainlookedatabroadsetofcompanies’AI-relatedpractices,thistimeexaminingabout

twiceasmany,toseewhichmightcorrespondwithcapturingmorevaluefromAI.TheorganizationswiththehighestEBITattributabletoAIweremorelikelytoengageinnearlyeverypracticethanthoseseeinglessvaluefromAI.Thesepracticesgenerallyaligntosixcategories:strategy;talentandleadership;waysofworking;models,tools,andtechnology;data;andadoption(Exhibit3).

Butafewpracticesareadoptedataboutthesamelevelbyallcompanies:forexample,usingtest-and-learnmethodologiestorunrapiditerationsinAI

initiatives,puttingprocessesinplacetocapture

businessfeedback,anddefiningclustersofAIusecasesinprioritybusinessunits,functions,orotherareasofbusinessactivity.

Exhibit3

Sixsetsofpracticesdifferentiatehigh-performingcompaniesfromothers,withasubsetadoptedmuchmoreoftenbytheseleaders.

Shareofrespondentsreportingtheirorganizationsengageineachpractice,%ofrespondents1

Strategy

HavearoadmapclearlyprioritizingAIinitiativeslinkedtobusinessvalueacrossorganization

AIhighperformers

55%

Allotherrespondents

29%

HaveaclearlydefinedAIvisionandstrategy

43%

17%

Seniormanagementisfullyalignedandcommittedto

organization’sAIstrategy

60%

34%

HaveanactiveprogramtodevelopandmanageanextensiverangeofAIecosystempartnerships(eg,withcompanies,academia)

43%

28%

AIstrategythatalignswiththebroadercorporatestrategy

Talentandleadership

TechprofessionalsdevelopAIskillsthroughtailoredcurriculumsbyroleandprogressalongdefinedcareertrajectories

53%

40%

42%

15%

Anappointed,credibleleaderisempoweredtomoveAIinitiatives

forwardincollaborationwithpeersacrossbusinessunitsandfunctions

52%

32%

Strong,centralizedcoordinationofAIinitiativesisbalancedwithcloseconnectivitytoendusersinthebusiness

42%

25%

AItalentisefectivelyrecruitedandonboarded

36%

21%

TypeofAItalentneeded(eg,byroleandskilllevel)tosupportAIinitiativesisunderstood

Waysofworking

FeelcomfortabletakingriskswithAI-relatedinvestmentdecisions

45%

65%

33%

31%

Useadvancedprocesses(eg,dataoperations,microservices)todeployAI

57%

23%

HaveaclearframeworkforAIgovernancethatcoversallstepsofthemodel-developmentprocessandmanagesAI-relatedrisks

42%

14%

Usedesignthinking,involvingtheenduserindevelopmentofAItools

56%

38%

AI-developmentteamsacrosstheorganizationfollowastandardprotocoltobuildanddeliverAItools

33%

16%

Globalsurvey:ThestateofAIin2020

6

Exhibit3(continued)

Sixsetsofpracticesdifferentiatehigh-performingcompaniesfromothers,withasubsetadoptedmuchmoreoftenbytheseleaders.

Shareofrespondentsreportingtheirorganizationsengageineachpractice,%ofrespondents1

Models,tools,andtechnology

HavestandardtoolframeworksanddevelopmentprocessesinplacefordevelopingAImodels

AIhighperformers

51%

Allotherrespondents

19%

UnderstandhowfrequentlyAImodelsneedtobeupdated,andrefreshthembasedonclearlydefinedcriteria

45%

15%

UseautomatedtoolstoproduceandtestAImodels

48%

20%

TrackAI-modelperformanceandexplanationstoensurethatoutcomesand/ormodelsimproveovertime

53%

29%

Useastandardizedtoolsettocreateproduction-readydatapipelines

44%

23%

Ownahigh-performancecomputingclusterforAIworkloads

37%

16%

Useastandardizedend-to-endplatformforAI-relateddatascience,dataengineering,andapplicationdevelopment

Data

GeneratesyntheticdatatotrainAImodelswhenthereareinsu代cientnaturaldatasets

40%

49%

20%

16%

RapidlyintegrateinternalstructureddatatouseinAIinitiatives

56%

28%

Havewell-definedgovernanceprocessesinplaceforkeydata-relateddecisions

43%

21%

HavescalableinternalprocessesforlabelingAItrainingdata

39%

18%

Protocolsareinplacetoensureappropriatelevelsofdataquality

48%

29%

Adatadictionary(ie,ametadatarepository)describesthefeaturesofdatathatareaccessibleacrosstheenterprise

40%

23%

AcleardatastrategysupportsandenablesAI

Adoption

Entireorganizationconsistentlyadherestotheexecution

processesidentifiedasessentialtocapturingvaluefromAI

44%

57%

31%

17%

SystematicallytrackacomprehensivesetofkeyperformanceindicatorstomeasuretheimpactofAIinitiatives

52%

27%

Capabilitiesaredesignedforscalability,andAIinitiativesarefullyscaledwithinbusinessunitsand/orcompany-wide

52%

32%

HaveacomprehensiveprocessformovingAIsolutionsfrompilottoproduction

52%

34%

EnactefectivechangemanagementtoensureAIadoption(eg,byhavingleadersmodelbehaviors)

44%

28%

1PracticesshownherearerepresentativeofthosewiththehighestdeltasbetweenAIhighperformersandotherrespondents.Notallpracticesaskedaboutareshown.

Globalsurvey:ThestateofAIin2020

7

McKinseyCommentary

BryceHall,associatepartner,Washington,DC

orheavilycustomizetheirAIcapabilities

in-house.ManyexecutivesnowrealizethatAIsolutionstypicallyneedtobedevelopedoradaptedinclosecollaborationwithbusi-nessuserstoaddressrealbusinessneedsandenableadoption,scale,andrealvaluecreation.Asaresult,weseecompanies

increasinglydevelopingabenchofAI

talentandlaunchingtrainingprogramstoraisetheoverallanalyticsacumenacrosstheirorganizations.

Oneofthemostremarkablepatterns

It’salsostrikingthatsomeofthebiggest

gapsbetweenAIhighperformersand

othersaren’tonlyintechnicalareas,suchasusingcomplexAI-modelingtechniques,butalsointhehumanaspectsofAI,suchasthealignmentofseniorexecutives

aroundAIstrategyandadoptionof

standardexecutionprocessestoscaleAIacrossanorganization.

Finally,weseeathemeintheseresultsthatweseeinmuchofourworkwith

companies:higherperformersdevelop

weseeinthesefindingsistheadoptionofcorepracticesamongcompaniescapturingvaluefromAI.Therereallyisa“playbook”

forsuccess.It’sencouragingtoseealargerproportionoforganizationsthisyeardoingmoreinfoundationalareas,butmanystill

arenot.Weseecompanies,forexample,

stillspendingdisproportionatetime

cleaningandintegratingdata,notfollow-ingstandardprotocolstobuildAItools,orrunning“shinyobject”analysesnottiedtobusinessvalue.

Ontheground

Puttingbestpracticestowork

Seniorexecutivesatcompaniesmaking

progressinAIadoptiontellMcKinseyin

interviewsthattheyarefindingmanyoftheleadingpracticesessential.

Onstrategy

“Thisprogramwasoriginatedbottom-up

bythebusiness,andtheCEOhasbecomeasupporter,seeingthisverymuchasa

strategicopportunity.”

–HeadofAI,data,andanalyticsataglobaloilandgascompany

“Investmentdecisionsaremadebythe

managementboard.Sowheneverwehaveimplementedausecase,wemakesurethatthebusinessteamisreportingitintothe

boardtoprovidetransparencyonresultsandwhyweshouldexpandourefforts.”

–Analyticsleaderataglobalbank

Ontalentandleadership

“Weareinvestingquiteheavilyintalent

upskilling.Ifyouhaveaworkforceoftensofthousandsofpeople,youhavetothinkabouthowtomovethisentireworkforceforward.

That’swhywearedoingthisattwolevels:

one,partneringwithaleadingtechnology

companyonimprovingthedataandAIskillsofpractitionersand,two,improvingthe

skillsandunderstandingofAIamongseniormanagementwithdedicatedcourses.”

–Analyticsleaderataglobalbank

Onadoption

“Buildingthetechnologytookusmuchlesstimethanalignmentandgettingpeople

toadoptit.Whileleadershipgenerally

believesinthiswork,youneedtoprovide

themwithdetailsonwhattheworkwill

actuallyentail,howitwillchangetheirpartofthebusiness,andhowitwillmakelifefortheirassociateseasier.Thesameneedstobedonewithemployees.Ourexperience

isthatitisn’tenoughto‘trainandexplain.’We’vefounditveryusefultobringthe

associateswhoareexpertsintheapplica-tiondomainintothebuildofthesolution.”

–Headofanalyticsandinsightsataglobalpharmaceuticalcompany

Globalsurvey:ThestateofAIin2020

8

ManagingAIrisks

Whilemanycompaniesstillaren’tacknowledgingmostAIrisks,theymodestlyincreased

mitigatingahandfulofthem.

Thesurveyfindingssuggestthataminorityof

companiesrecognizemanyoftherisksofAIuse,andfewerareworkingtoreducetherisks—aswastrue

in2019.Cybersecurityremainstheonlyriskthat

amajorityofrespondentssaytheirorganizations

considerrelevant.Overall,theshareofrespondentscitingeachriskasrelevanthasremainedflat5orhasdecreased,withtheexceptionofnationalsecurity.

Yetsomeofthelesscommonlyconsideredrisks

aretheonesinwhichweseeincreasingmitigation.Nationalsecurityandphysicalsafetyaremore

commonlyaddressednowthanin2019.ResponsesalsoindicatethatcompaniesincreasinglymanagerisksrelatedtoAIexplainability.

Highperformersremainmorelikelythanotherstorecognizeandmitigatemostrisks(Exhibit4).

Forexample,respondentsathighperformers

are2.6timesmorelikelythanotherstosaytheir

organizationsaremanagingequityandfairnessriskssuchasunwantedbiasinAI-drivendecisions.

Exhibit4

Alargershareofrespondentsthanlastyearsaytheirorganizationsareactivelyworkingtomitigaterisksthatarenotcommonlyconsideredrelevant.

Risksthatorganizationsconsiderrelevantandrisksthat2019

organizationsareworkingtomitigate,1%ofrespondents2020

48

51

35

38

30

30

19

25

19

22

17

19

13

14

11

15

4

10

4

2

RelevantrisksMitigatedrisks

Cybersecurity

62

62

Regulatorycompliance

50

48

Personal/individualprivacy

45

39

Explainability2

39

41

34

Organizationalreputation

31

Workforce/labordisplacement

31

35

Equityandfairness

26

24

Physicalsafety

16

19

9

Nationalsecurity

15

Politicalstability

7

9

1QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshadadoptedAIinatleastonebusinessfunction;n=1,151.Respondentswhosaid“don'tknow/notapplicable”arenotshown.

2Ie,theabilitytoexplainhowAImodelscometotheirdecisions.

5Thatis,thechangefromtheprioryearwasnotstatisticallysignificant.

Globalsurvey:ThestateofAIin2020

9

McKinseyCommentary

RogerBurkhardt,partner,NewYork

GeneralDataProtectionRegulation[GDPR]andtheCaliforniaConsumerPrivacyAct

[CCPA])thataffectanumberofindustriesaswellasanincreasedawarenessof

advancesinexplainabilitytechniques.

Overall,however,theresultsare

concerning.Whilesomerisks,suchas

physicalsafety,applytoonlyparticular

industries,it’sdifficulttounderstandwhyuniversalrisksaren’trecognizedbyamuchhigherproportionofrespondents.Cyber-securityisrelevantforanyorganization

It’sencouragingtoseetheincreasein

recognitionofrisksarisingfromalackof

explainability,meaningtheinabilityto

understandthedriversofacomplexAI

model’spredictions.Theindustry-level

datashowthatnotonlyarehealthcareandfinancialservicesleadinghere,whichis

expectedbecausethoseindustriesare

moreregulated,butalsohightechand

business,legal,andprofessionalservices.SomeofthejumpinmitigationofthisriskcouldbedrivenbyregulationsinEurope

andtheUnitedStates(forexample,the

usinganytypeofdeviceconnectedtothe

internet,andattackshaverisensignificantlyduringthepandemic,whichhasdrivenevenmorebusinessandcommerceonline.And

whileequityandfairnesscanbetrickyto

solvefor,itshouldbeonthelistofrelevantconcernsfororganizationsinanyindustry.It’sparticularlysurprisingtoseelittleim-

provementintherecognitionandmitigationofthisriskgiventheattentiontoracial

biasandotherexamplesofdiscriminatorytreatmentsuchasage-basedtargetinginjobadvertisementsonsocialmedia.

Ontheground

AglobalcommoditiesproducerincreasesAIadoptionwithexplainability

needtofeelconfidentthatthereasoning

behindthedecisionissoundandsafe.Thematerialsmanufacturerusesthesimplest

andmosttransparentmodelspossibleto

enableexplainability,whichhasgonea

longwayinmakingworkersconfidentandexcitedtousenewAIapplications.Italso

hasimprovedoperations,contributingtoa15percentupliftinearningsbeforeinterest,taxes,depreciation,andamortization

throughAIandanalyticsinitiatives.

Alackofmodelexplainabilitypresents

alevelofriskinnearlyeveryindustry.In

someareas,likehealthcare,thestakes

areparticularlyhighwhenAIcouldbe

presentingarecommendationforpatientcare.Infinancialservices,regulators

mayneedtoknowwhyanorganizationis

makingparticulardecisions—onlending,forexample.Butexplainabilitycanpresentanotherrisk:lackofAIadoption,leadingtowastedinvestmentandtheriskoffalling

behindthecompetition.InaninterviewwithMcKinsey,theheadofAItransformationataglobalmaterialsmanufacturernotesthatwithoutanexplainablemodel,adoption

byfrontlineworkersisnearlyimpossible.

WorkersneedtobeabletotrustAI’s

judgmentnotonlyforthesakeoftaking

themostefficientactionbutalsofortheirphysicalsafety.Whenatoolrecommendsrunningapieceofpotentiallydangerous

heavyequipmentinacertainway,workers

Globalsurvey:ThestateofAIin2020

10

TheCOVID-19effect

Despitetheeconomicchallengesthatpandemic-mitigationmeasureshavecausedformany

companies,thoseseeingthemostvaluefromAIaredoublingdownonthetechnology.

ThecompaniesseeingsignificantvaluefromAI

arecontinuingtoinvestinitduringthepandemic.

Mostrespondentsathighperformerssaytheir

organizationshaveincreasedinvestmentinAIineachmajorbusinessfunctioninresponsetothepandemic,whilelessthan30percentofotherrespondents

saythesame(Exhibit5).Byindustry,respondentsinautomotiveandassemblyaswellasinhealthcare

andpharmaarethemostlikelytosaytheircompanieshaveincreasedinvestment.

Generally,respondentsfromcompaniesthathave

adoptedmoreAIcapabilitiesaremorelikelytoreportseeingAImodelsmisperformamidtheCOVID-19

pandemicthanothersare.Responsesindicate

thathigh-performingorganizations,whichtendtohaveadoptedmoreAIcapabilitiesthanothers,arewitnessingmoremisperformancethancompaniesseeinglessvaluefromAI.Thesehigh-performing

organizations’modelswereparticularlyvulnerablewithinmarketingandsales,productdevelopment,andserviceoperations(Exhibit6)—theareaswhereAIadoptionismostcommonlyreported.

Exhibit5

Mosthigh-performingcompanieshaveincreasedtheirinvestmentinAIamidtheCOVID-19crisis,thoughthechangesvarybyindustry.

AveragechangeinAIinvestmentacrossbusinessfunctionsbecauseofCOVID-19pandemic,%ofrespondentsreportingadoptionofAI

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论