版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中学生标准学术能力诊断2026届数学高二第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的渐近线的斜率是()A.1 B.C. D.2.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.3.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.4.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B.C. D.5.在平面直角坐标系xOy中,过x轴上的点P分别向圆和圆引切线,记切线长分别为.则的最小值为()A.2 B.3C.4 D.56.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.7.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题8.设,,,则,,大小关系为A. B.C. D.9.某同学为了调查支付宝中的75名好友的蚂蚁森林种树情况,对75名好友进行编号,分别为1,2,…,75,采用系统抽样的方法抽取一个容量为5的样本,已知11号,26号,56号,71号好友在样本中,则样本中还有一名好友的编号是()A.40 B.41C.42 D.3910.将上各点的纵坐标不变,横坐标变为原来的2倍,得到曲线C,若直线l与曲线C交于A,B两点,且AB中点坐标为M(1,),那么直线l的方程为()A. B.C. D.11.等差数列中,为其前项和,,则的值为()A.13 B.16C.104 D.20812.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,在直线上存在点P,使,则m的最大值是_______.14.已知曲线的方程是,给出下列四个结论:①曲线C恰好经过4个整点(即横、纵坐标均为整数的点);②曲线有4条对称轴;③曲线上任意一点到原点的距离都不小于1;④曲线所围成图形的面积大于4;其中,所有正确结论的序号是_____15.如图,在平行六面体中,底面是边长为1的正方形,若,且,则的长为_________16.已知正方体的棱长为为的中点,为面内一点.若点到面的距离与到直线的距离相等,则三棱锥体积的最小值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知斜率为的直线与椭圆:交于,两点(1)若线段的中点为,求的值;(2)若,求证:原点到直线的距离为定值18.(12分)已知函数,若函数处取得极值(1)求,的值;(2)求函数在上的最大值和最小值19.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.20.(12分)已知椭圆的离心率为,短轴端点到焦点的距离为2(1)求椭圆的方程;(2)设为椭圆上任意两点,为坐标原点,且以为直径的圆经过原点,求证:原点到直线的距离为定值,并求出该定值21.(12分)已知椭圆的离心率为,右焦点F到上顶点的距离为.(1)求椭圆的方程;(2)是否存在过点F且与x轴不垂直的直线与椭圆交于A、B两点,使得点C()在线段AB的中垂线上?若存在,求出直线l:若不存在,说明理曲.22.(10分)已知椭圆过点,且离心率,为坐标原点.(1)求椭圆的方程;(2)判断是否存在直线,使得直线与椭圆相交于两点,直线与轴相交于点,且满足,若存在,求出直线的方程;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B2、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.3、A【解析】求出、的值,可得出双曲线的渐近线方程.【详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.4、A【解析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.5、D【解析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解.详解】,圆心,半径,圆心,半径设点P,则,即到与两点距离之和的最小值,当、、三点共线时,的和最小,即的和最小值为.故选:D【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.6、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.7、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A8、C【解析】由,可得,,故选C.考点:指数函数性质9、B【解析】根据系统抽样等距性即可确定结果.【详解】根据系统抽样等距性得:11号,26号,56号,71号以及还有一名好友的编号应该按大小排列后成等差数列,样本中还有一名好友的编号为26号与56号的等差中项,即41号,故选:B【点睛】本题考查系统抽样,考查基本分析求解能力,属基础题.10、A【解析】先根据题意求出曲线C的方程,然后利用点差法求出直线l的斜率,从而可求出直线方程【详解】设点为曲线C上任一点,其在上对应在的点为,则,得,所以,所以曲线C的方程为,设,则,两方程相减整理得,因为AB中点坐标为M(1,),所以,即,所以,所以,所以直线l的方程为,即,故选:A11、D【解析】利用等差数列下标的性质,结合等差数列前项和公式进行求解即可.【详解】由,所以,故选:D12、C【解析】根据题先求出阅读过西游记人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题二、填空题:本题共4小题,每小题5分,共20分。13、11【解析】设P点坐标,根据条件知,由向量的坐标运算可得P点位于圆上,再根据P存在于直线上,可知直线和圆有交点,因此列出相应的不等式,求得m范围,可得m的最大值.【详解】设P(x,y),则,由题意可知,所以,即,即满足条件的点P在圆上,又根据题意P点存在于直线上,则直线与圆有交点,故有圆心(1,0)到直线的距离小于等于圆的半径,即,解得,则m的最大值为11,故答案为:11.14、②③④【解析】根据曲线方程作出曲线,即可根据题意判断各结论的真假【详解】曲线的简图如下:根据图象以及方程可知,曲线C恰好经过9个整点,它们是,,,所以①不正确;由图可知,曲线有4条对称轴,它们分别是轴,轴,直线和,②正确;由图可知,曲线上任意一点到原点的距离都不小于1,③正确;由图可知,曲线所围成图形的面积等于,④正确故答案为:②③④15、【解析】因为,所以,即,故16、##【解析】由题意可知,点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面建立平面直角坐标系,求出抛物线方程,直线的方程,将直线向抛物线平移,恰好与抛物线相切时,切点为点,此时的面积最小,则三棱锥体积的最小【详解】因为为面内一点,且点到面的距离与到直线的距离相等,所以点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面,以所在的直线为轴,以的中垂线为轴建立平面直角坐标系,则,设抛物线方程为,则,得,所以抛物线方程为,,直线的方程为,即,设与直线平行且与抛物线相切的直线方程为,由,得,由,得,所以与抛物线相切的直线为,此时切点为,且的面积最小,因为点到直线的距离为,所以的面积的最小值为,所以三棱锥体积的最小值为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)设出两点的坐标,利用点差法即可求出的值;(2)设出直线的方程,与椭圆方程联立,写韦达;根据,求出,从而可证明原点到直线的距离为定值【小问1详解】设,则,,两式相减,得,即,所以,即,又因为线段的中点为,所以,即;【小问2详解】设斜率为的直线为,,由,得,所以,,因为,所以,即,所以,所以,即,所以,原点到直线的距离为.所以原点到直线的距离为定值.18、(1);(2)最大值为,最小值为【解析】(1)求出导函数,由即可解得;(2)求出函数的单调区间,进而可以求出函数的最值.【详解】解:(1)由题意,可得,得.(2),令,得或(舍去)当变化时,与变化如下递增递减所以函数在上的最大值为,最小值为.19、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.20、(1)(2)证明见解析,定值为【解析】(1)根据题意得到,,得到椭圆方程.(2)考虑直线斜率存在和不存在两种情况,联立方程,根据韦达定理得到根与系数的关系,将题目转化为,化简得到,代入计算得到答案.【小问1详解】椭圆的离心率为,短轴端点到焦点的距离为,故,,故椭圆方程为.【小问2详解】当直线斜率存在时,设直线方程为,,,则,即,,以为直径的圆经过原点,故,即,即,化简整理得到:,原点到直线的距离为.当直线斜率不存在时,为等腰直角三角形,设,则,解得,即直线方程为,到原点的距离为.综上所述:原点到直线的距离为定值.【点睛】本题考查了椭圆方程,椭圆中的定值问题,意在考查学生的计算能力,转化能力和综合应用能力,其中将圆过原点转化为是解题的关键.21、(1)(2)存在,【解析】(1)由题意可得,,求得的值即可求解;(2)由(1)得,假设存在满足条件的直线:,代入椭圆方程消去可得、,由中点坐标公式可得中点的坐标,由求得的值即可求解.小问1详解】由题意可得,,,解得,,所以椭圆的方程为【小问2详解】由(1)得,假设存在满足条件的直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 可持续物流模式-洞察与解读
- 抗生素干扰菌群稳态-洞察与解读
- 制作培训课件文案范文
- 2026年新版双鱼座合同
- 服装公司员工薪酬规范细则
- 电气工程及各分项安装施工方案4
- 我国环境责任保险制度的进阶之路
- 我国环保企业融资渠道的多元探索与实践
- 我国煤电纵向交易关系:理论剖析与实证洞察
- 电商平台运营推广策略课件
- 厂务设备运营规章制度
- 尼帕病毒病的预防控制学习培训课件
- 河道采砂厂安全生产制度
- GJB3206B-2022技术状态管理
- 《不在网络中迷失》课件
- 山东省泰安市2024-2025学年高一物理下学期期末考试试题含解析
- 竹子产业发展策略
- 【可行性报告】2023年硫精砂项目可行性研究分析报告
- 2024-2025年上海中考英语真题及答案解析
- 2023年内蒙古呼伦贝尔市海拉尔区公开招聘公办幼儿园控制数人员80名高频笔试、历年难易点考题(共500题含答案解析)模拟试卷
- 一年级数学质量分析强桂英
评论
0/150
提交评论