高三数学等差数列多选题专项训练单元-易错题学能测试试题_第1页
高三数学等差数列多选题专项训练单元-易错题学能测试试题_第2页
高三数学等差数列多选题专项训练单元-易错题学能测试试题_第3页
高三数学等差数列多选题专项训练单元-易错题学能测试试题_第4页
高三数学等差数列多选题专项训练单元-易错题学能测试试题_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三数学等差数列多选题专项训练单元易错题学能测试试题一、等差数列多选题1.已知数列是首项为1,公差为d的等差数列,则下列判断正确的是()A.a1=3 B.若d=1,则an=n2+2n C.a2可能为6 D.a1,a2,a3可能成等差数列解析:ACD【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解【详解】因为,,所以a1=3,an=[1+(n-1)d](n+2n).若d=1,则an=n(n+2n);若d=0,则a2=6.因为a2=6+6d,a3=11+22d,所以若a1,a2,a3成等差数列,则a1+a3=a2,即14+22d=12+12d,解得.故选ACD2.已知数列满足:,当时,,则关于数列说法正确的是()A. B.数列为递增数列C.数列为周期数列 D.解析:ABD【分析】由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果.【详解】得,∴,即数列是首项为,公差为1的等差数列,∴,∴,得,由二次函数的性质得数列为递增数列,所以易知ABD正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.3.已知等差数列的前n项和为Sn(n∈N*),公差d≠0,S6=90,a7是a3与a9的等比中项,则下列选项正确的是()A.a1=22 B.d=-2C.当n=10或n=11时,Sn取得最大值 D.当Sn>0时,n的最大值为21解析:BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A,B;由配方法,结合n为正整数,可判断C;由Sn>0解不等式可判断D.【详解】由公差,可得,即,①由a7是a3与a9的等比中项,可得,即,化简得,②由①②解得,故A错,B对;由,可得或时,取最大值,C对;由Sn>0,解得,可得的最大值为,D错;故选:BC【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.4.设等差数列的前项和为,公差为.已知,,则()A. B.数列是递增数列C.时,的最小值为13 D.数列中最小项为第7项解析:ACD【分析】由已知得,又,所以,可判断A;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B;由,可判断C;判断,的符号,的单调性可判断D;【详解】由已知得,,又,所以,故A正确;由,解得,又,当时,,时,,又,所以时,,时,,所以在上单调递增,在上单调递增,所以数列不是递增数列,故B不正确;由于,而,所以时,的最小值为13,故C选项正确;当时,,时,,当时,,时,,所以当时,,,,时,为递增数列,为正数且为递减数列,所以数列中最小项为第7项,故D正确;【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.5.已知数列的前n项和为则下列说法正确的是()A.为等差数列 B.C.最小值为 D.为单调递增数列解析:AD【分析】利用求出数列的通项公式,可对A,B,D进行判断,对进行配方可对C进行判断【详解】解:当时,,当时,,当时,满足上式,所以,由于,所以数列为首项为,公差为2的等差数列,因为公差大于零,所以为单调递增数列,所以A,D正确,B错误,由于,而,所以当或时,取最小值,且最小值为,所以C错误,故选:AD【点睛】此题考查的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n项和的最值问题,属于基础题6.定义为数列的“优值”已知某数列的“优值”,前n项和为,则()A.数列为等差数列 B.数列为等比数列C. D.,,成等差数列解析:AC【分析】由题意可知,即,则时,,可求解出,易知是等差数列,则A正确,然后利用等差数列的前n项和公式求出,判断C,D的正误.【详解】解:由,得,所以时,,得时,,即时,,当时,由知,满足.所以数列是首项为2,公差为1的等差数列,故A正确,B错,所以,所以,故C正确.,,,故D错,故选:AC.【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n项和的求解,难度一般.7.已知数列的前项和为,前项积为,且,则()A.当数列为等差数列时,B.当数列为等差数列时,C.当数列为等比数列时,D.当数列为等比数列时,解析:AC【分析】将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项【详解】由,可得,令,,所以是奇函数,且在上单调递减,所以,所以当数列为等差数列时,;当数列为等比数列时,且,,同号,所以,,均大于零,故.故选:AC【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题8.等差数列中,为其前项和,,则以下正确的是()A.B.C.的最大值为D.使得的最大整数解析:BCD【分析】设等差数列的公差为,由等差数列的通项公式及前n项和公式可得,再逐项判断即可得解.【详解】设等差数列的公差为,由题意,,所以,故A错误;所以,所以,故B正确;因为,所以当且仅当时,取最大值,故C正确;要使,则且,所以使得的最大整数,故D正确.故选:BCD.9.设公差不为0的等差数列的前n项和为,若,则下列各式的值为0的是()A. B. C. D.解析:BD【分析】由得,利用可知不正确;;根据可知正确;根据可知不正确;根据可知正确.【详解】因为,所以,所以,因为公差,所以,故不正确;,故正确;,故不正确;,故正确.故选:BD.【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.10.记为等差数列前项和,若且,则下列关于数列的描述正确的是()A. B.数列中最大值的项是C.公差 D.数列也是等差数列解析:AB【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列中,即,.对于A选项,,所以A选项正确.对于C选项,,,所以,所以C选项错误.对于B选项,,令得,由于是正整数,所以,所以数列中最大值的项是,所以B选项正确.对于D选项,由上述分析可知,时,,当时,,且.所以数列的前项递减,第项后面递增,不是等差数列,所以D选项错误.故选:AB【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前项和的最值,可以令或来求解.11.已知数列的前n项和为,且满足,则下列说法正确的是()A.数列的前n项和为 B.数列的通项公式为C.数列为递增数列 D.数列为递增数列解析:AD【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得.【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D正确;所以,即A正确;当时所以,即B,C不正确;故选:AD【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.12.等差数列的前项和为,若,公差,则()A.若,则 B.若,则是中最大的项C.若,则 D.若则.解析:BC【分析】根据等差数列的前项和性质判断.【详解】A错:;B对:对称轴为7;C对:,又,;D错:,但不能得出是否为负,因此不一定有.故选:BC.【点睛】关键点点睛:本题考查等差数列的前项和性质,(1)是关于的二次函数,可以利用二次函数性质得最值;(2),可由的正负确定与的大小;(3),因此可由的正负确定的正负.13.已知递减的等差数列的前项和为,,则()A. B.最大C. D.解析:ABD【分析】转化条件为,进而可得,,再结合等差数列的性质及前n项和公式逐项判断即可得解.【详解】因为,所以,即,因为数列递减,所以,则,,故A正确;所以最大,故B正确;所以,故C错误;所以,故D正确.故选:ABD.14.设等差数列的前项和为.若,,则()A. B.C. D.解析:BC【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式【详解】解:设等差数列的公差为,因为,,所以,解得,所以,,故选:BC15.已知数列满足,,则下列各数是的项的有()A. B. C. D.解析:BD【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】因为数列满足,,;;;数列是周期为3的数列,且前3项为,,3;故选:.【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.16.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列称为“斐波那契数列”,记Sn为数列的前n项和,则下列结论正确的是()A. B.C. D.解析:ABD【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确.【详解】依题意可知,,,,,,,,故正确;,所以,故正确;由,,,,,,可得,故不正确;,,,,,,所以,所以,故正确.故选:ABD.【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.17.题目文件丢失!18.(多选)在数列中,若为常数,则称为“等方差数列”下列对“等方差数列”的判断正确的是()A.若是等差数列,则是等方差数列B.是等方差数列C.是等方差数列.D.若既是等方差数列,又是等差数列,则该数列为常数列解析:BD【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A,若是等差数列,如,则不是常数,故不是等方差数列,故A错误;对于B,数列中,是常数,是等方差数列,故B正确;对于C,数列中,不是常数,不是等方差数列,故C错误;对于D,是等差数列,,则设,是等方差数列,是常数,故,故,所以,是常数,故D正确.故选:BD.【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.19.已知等差数列的公差,前项和为,若,则下列结论中正确的有()A. B.C.当时, D.当时,解析:ABC【分析】因为是等差数列,由可得,利用通项转化为和即可判断选项A;利用前项和公式以及等差数列的性质即可判断选项B;利用等差数列的性质即可判断选项C;由可得且,即可判断选项D,进而得出正确选项.【详解】因为是等差数列,前项和为,由得:,即,即,对于选项A:由得,可得,故选项A正确;对于选项B:,故选项B正确;对于选项C:,若,则,故选项C正确;对于选项D:当时,,则,因为,所以,,所以,故选项D不正确,故选:ABC【点睛】关键点点睛:本题的关键点是由得出,熟记等差数列的前项和公式和通项公式,灵活运用等差数列的性质即可.20.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{an}称为“斐波那契数列”,记Sn为数列{an}的前n项和,则下列结论正确的是()A.a8=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论