苏教七年级下册期末复习数学测试模拟真题答案_第1页
苏教七年级下册期末复习数学测试模拟真题答案_第2页
苏教七年级下册期末复习数学测试模拟真题答案_第3页
苏教七年级下册期末复习数学测试模拟真题答案_第4页
苏教七年级下册期末复习数学测试模拟真题答案_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏教七年级下册期末复习数学测试模拟真题答案一、选择题1.下列算式①22×33;②(2×62)×(3×63);③63+63;④(22)3×(33)2中,结果等于66的有()A.①② B.①④ C.②③ D.②④2.如图,∠B的同位角是()A.∠1 B.∠2 C.∠3 D.∠43.在平面直角坐标系中,如果点在第三象限,那么的取值范围为()A. B. C. D.4.若,则下列各式中正确的是()A. B. C. D.5.关于的不等式组无解,那么的取值范围是()A.≤-1 B.<1 C.-1<≤0 D.-1≤<06.以下说法中:(1)多边形的外角和是;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()A.0 B.1 C.2 D.37.已知整数,满足下列条件:,…,以此类推,的值是()A. B. C. D.8.如图,将一张三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列说法错误的是()A. B.C. D.二、填空题9.计算:2x2•5x3=___________.10.命题“若,则a=b”是__________命题(填“真”或“假”)11.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.12.已知长方形的周长为6,面积为2,若长方形的长为,宽为,则的值为___________.13.若关于,的二元一次方程组的解为正数,则的取值范围为__.14.如图,等腰△ABC中,AB=AC=10,BC=12,点P是底边BC上一点,则AP的最小值是________15.若n边形的每个内角都为135°,则n=_____.16.如图,直线AB//CD,∠B=70°,∠D=30°,则∠E的度数是______.17.计算:(1)(2)18.分解因式(1);(2).19.解方程组:(1);(2).20.解不等式组:,把它的解集在数轴上表示出来并写出它的负整数解.三、解答题21.完成推理填空,已知:如图,平分,与相交于点,交的延长线于点,试说明解:因为(已知)所以()又因为平分(已知)所以()因为()所以(等量代换)所以()22.某商店决定购进A、B两种纪念品.若购进A种纪念品8件,B种纪念品3件,需要95元;若购进A种纪念品5件,B种纪念品6件,需要80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)23.定义:如果一个两位数a的十位数字为m,个位数字为n,且、、,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为.例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以.根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________;②计算:________;________;(m、n分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c的十位数字是,个位数字是,且,请求出“互异数”b和c;(3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字是3,且满足,请直接写出满足条件的所有x的值________;(4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围________.24.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.①若,,则_____;若,则_____;②试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.25.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等,例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①,若入射光线EF与反射光线GH平行,则α=________°.(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.(3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示)【参考答案】一、选择题1.D解析:D【分析】根据同底数幂的乘法、积的乘方、幂的乘方分别计算即可求解.【详解】解:①,故不符合题意;②,故符合题意;③,故不符合题意;④,故符合题意故选:D【点睛】本题考查了同底数幂的乘法、幂的乘方和积的乘方运算,属于基础的运算求解题,难度不大.解题的关键是熟练掌握相关的运算法则.有关乘方的运算需注意两点:一是乘方的本质是乘法运算;二是找准乘方的底数.2.C解析:C【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【详解】解:∠B与∠3是DE、BC被AB所截而成的同位角,故选:C.【点睛】本题主要考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.3.A解析:A【分析】根据解一元一次不等式基本步骤移项、合并同类项可得.【详解】解:由题意知-2+m<0,则m<2,故选:A.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.D解析:D【分析】根据不等式的性质,进行逐个判断即可得到答案.【详解】解:A、因为,当,时,故此选项错误;B、因为,所以即,则,故此选项错误;C、因为,所以,故此选项错误;D、因为,所以即,故此选项正确;故选D.【点睛】本题主要考查了不等式的性质,熟记不等式的性质的内容是解此题的关键.5.A解析:A【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m的不等式,就可以求出m的取值范围了.【详解】解:,解不等式①得:x<m,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.6.C解析:C【解析】【分析】利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.【详解】解:(1)多边形的外角和是360°,正确,是真命题;(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,真命题有2个,故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.7.B解析:B【分析】通过有限次计算的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:a0=0,a1=-|a0+1|=-|0+1|=-1,a2=-|a1+2|=-|-1+2|=-1,a3=-|a2+3|=-|-1+3|=-2,a4=-|a3+4|=-|-2+4|=-2,a5=-|a4+5|=-|-2+5|=-3;a6=-|a5+6|=-|-3+6|=-3;a7=-|a6+7|=-|-3+7|=-4;……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2020+1)÷2=1010…1,故a2020=-1010,故选:B.【点睛】本题考查了规律型:数字的变化类,需要掌握绝对值的运算法则.8.A解析:A【分析】由翻折变换的性质,三角形内角和定理逐项进行判断即可.【详解】解:由翻折变换可得,CD=ED,BC=BE,∠C=∠BED,∠CBD=∠EBD,∠BDC=∠BDE,∵AD+CD=AC,∴AD+DE=AC≠BD,因此选项A说法错误,符合题意;∵AE+BE=AB,∴AE+BC=AB,因此选项B说法正确,不符合题意;∵∠A+∠ADE=∠BED,∴∠A+∠ADE=∠C,因此选项C说法正确,不符合题意;∵∠BDC=∠A+∠ABD,∠BDC=∠BDE,∠CBD=∠ABD,∴∠A+∠CBD=∠BDE,因此选项D说法正确,不符合题意;故选:A.【点睛】本题考查翻折变换、三角形内角和定理,掌握翻折变换的性质、三角形内角和定理以及等量代换是正确判断的前提.二、填空题9.10x5【分析】单项式乘以单项式,就是把系数与系数相乘,同底数幂相乘.【详解】解:.故答案为:.【点睛】本题考查了单项式乘单项式的法则.熟悉运算法则是解题的关键.10.假【分析】根据可得,即可判断.【详解】∵∴,即∴原命题为假命题,故答案为:假.【点睛】本题考查真假命题的判断,熟练掌握平方根的基本概念是解题的关键.11.720°.【详解】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180(n≥3)且n为整数);多边形的外角和等于360度.12.【分析】根据题意先把a+b和ab的值求出,再把所给式子提取公因式ab,再整理为与题意相关的式子,代入求值即可.【详解】解:根据题意得:a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故答案为:6.【点睛】本题既考查对因式分解方法的掌握,又考查代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.13.【分析】先求出方程组的解,根据题意得出关于k的不等式组,再求出不等式组的解集即可.【详解】解:解方程组得:,关于,的二元一次方程组的解为正数,,解得:,故答案为:.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k的不等式组是解此题的关键.14.B解析:8【分析】根据等腰三角形三线合一性质及垂线段最短性质,可得当点P是底边BC的中点时,AP的值最小,在利用勾股定理解题即可.【详解】解:等腰△ABC中,AB=AC=10,根据垂线段最短得,当点P是底边BC的中点时,AP的值最小根据三线合一性质得,故答案为:8.【点睛】本题考查等腰三角形、三线合一性质、垂线段最短、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.8【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:外角的度数是:180﹣135=45°,则n=360°÷45°=8.故答案为8.【点睛】本解析:8【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:外角的度数是:180﹣135=45°,则n=360°÷45°=8.故答案为8.【点睛】本题考查了正多边形的性质,正确理解多边形的外角和定理是关键.16.40°【分析】根据平行线的性质,得出∠BMD=∠B=70°,再根据三角形外角的性质得∠BMD=∠D+∠E,即可得出∠E.【详解】解:∵AB∥CD,∴∠BMD=∠B=70°,又∵∠BMD解析:40°【分析】根据平行线的性质,得出∠BMD=∠B=70°,再根据三角形外角的性质得∠BMD=∠D+∠E,即可得出∠E.【详解】解:∵AB∥CD,∴∠BMD=∠B=70°,又∵∠BMD是△MDE的外角,∴∠E=∠BMD-∠D=70°-30°=40°.故答案为:40°.【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.17.(1)9;(2)【分析】(1)根据同底数幂的乘除法法则、零指数幂、负整数指数幂的法则计算;(2)根据单项式乘多项式的运算法则解答.【详解】解:(1);(2).【点睛】本题考查解析:(1)9;(2)【分析】(1)根据同底数幂的乘除法法则、零指数幂、负整数指数幂的法则计算;(2)根据单项式乘多项式的运算法则解答.【详解】解:(1);(2).【点睛】本题考查的是实数的运算、整式的乘法,掌握同底数幂的乘除法法则、负整数指数幂、单项式乘多项式的运算法则是解题的关键.18.(1);(2)【分析】(1)先提公因式,再利用平方差公式进行因式分解;(2)先根据乘法公式展开,再利用完全平方公式进行因式分解.【详解】解:(1)原式;(2)原式.【点睛】本题考查了解析:(1);(2)【分析】(1)先提公因式,再利用平方差公式进行因式分解;(2)先根据乘法公式展开,再利用完全平方公式进行因式分解.【详解】解:(1)原式;(2)原式.【点睛】本题考查了提公因式法、公式法因式分解,掌握平方差公式、完全平方公式的结构特征是正确解答的前提.19.(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1),①-②得:2y=4,解得:y=2,把y=2代入①得:x-2=3,解析:(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1),①-②得:2y=4,解得:y=2,把y=2代入①得:x-2=3,解得:x=5,则方程组的解为;(2),①×2+②×3得:13x=65,解得:x=5,把x=5代入①得:10+3y=16,解得:y=2,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.﹣2<x≤3,图见解析,负整数解为-1.【分析】先分别求出两个不等式的解集,然后在数轴上表示出来,即可求解.【详解】解:,由①得:x>﹣2,由②得:x≤3,∴不等式组的解集为﹣2<x≤解析:﹣2<x≤3,图见解析,负整数解为-1.【分析】先分别求出两个不等式的解集,然后在数轴上表示出来,即可求解.【详解】解:,由①得:x>﹣2,由②得:x≤3,∴不等式组的解集为﹣2<x≤3.把解集在数轴上表示:∴不等式组的负整数解为﹣1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.三、解答题21.两直线平行,同位角相等;角平分线定义;已知;;内错角相等,两直线平行【分析】根据平行线的性质得出∠1=∠CFE,求出∠2=∠E,根据平行线的判定得出即可.【详解】解:因为(已知),所以(两解析:两直线平行,同位角相等;角平分线定义;已知;;内错角相等,两直线平行【分析】根据平行线的性质得出∠1=∠CFE,求出∠2=∠E,根据平行线的判定得出即可.【详解】解:因为(已知),所以(两直线平行,同位角相等).又因为AE平分(已知),所以(角平分线定义),所以(等量代换).因为.(已知),所以(等量代换),所以(内错角相等,两直线平行).故答案为两直线平行,同位角相等;角平分线定义;已知;;内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.(1)A、B两种纪念品的价格分别为10元和5元;(2)该商店共有3种进货方案(3)若时,购进52件A纪念品,48件B纪念品获利最大;若时,购进50件A纪念品,50件B纪念品获利最大;若时,此时三种进解析:(1)A、B两种纪念品的价格分别为10元和5元;(2)该商店共有3种进货方案(3)若时,购进52件A纪念品,48件B纪念品获利最大;若时,购进50件A纪念品,50件B纪念品获利最大;若时,此时三种进货方案获利相同.【分析】(1)设A种纪念品每件x元,B种纪念品每件y元,根据购进A种纪念品8件,B种纪念品3件,需要95元和购进A种纪念品5件,B种纪念品6件,需要80元,列出方程组,再进行求解即可;(2)设商店最多可购进A纪念品m件,则购进B纪念品(100-m)件,根据购买这100件纪念品的资金不少于750元,但不超过764元,列出不等式组,再进行求解即可;(3)将总利润y表示成所进A纪念品件数x的函数,分类讨论,根据函数的单调性判断那种方案利润最大.【详解】解:(1)设A、B两种纪念品的价格分别为x元和y元,则,解得.答:A、B两种纪念品的价格分别为10元和5元.(2)设购买A种纪念品m件,则购买B种纪念品(100-m)件,则750≤10m+5(100-m)≤764,解得50≤m≤52.8,∵m为正整数,∴m=50,51,52,即有三种方案.第一种方案:购A种纪念品50件,B种纪念品50件;第二种方案:购A种纪念品51件,B种纪念品49件;第三种方案:购A种纪念品52件,B种纪念品48件;(3)设商家购进x件A纪念品,所获利润为y,则y=ax+(100-x)(5-a)=(2a-5)x+500-100a.∵商家出售的纪念品均不低于成本,,即0≤a≤5.①若2a-5>0即时,y=(2a-5)x+500-100a,y随x增大而增大.此时购进52件A纪念品,48件B纪念品获利最大.②若2a-5<0,即时,y=(2a-5)x+500-100a,y随x增大而减小.此时购进50件A纪念品,50件B纪念品获利最大.③若2a-5=0,即时,则y=250,为常数函数,此时三种进货方案获利相同.【点睛】本题考查二元一次方程组的应用,一元一次不等式组的应用和一次函数的应用.(1)能根据题意找出合适的等量关系是解决此问的关键;(2)能根据“资金不少于750元,但不超过764元”建立不等式组是解题关键;(3)中能分类讨论是解决此问的关键.23.(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W(b)=7,W(c)=13,列出解析:(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W(b)=7,W(c)=13,列出二元一次方程组,即可求x和y;(3)根据题意W(d)+W(e)<25可列出不等式,即可求x的值;(4)根据“互异数”f的十位数字是x+4,个位数字是x,分类讨论f,根据满足W(f)<t的互异数有且仅有3个,求出t的取值范围.【详解】解:(1)①∵如果一个两位数a的十位数字为m,个位数字为n,且m≠n、m≠0、n≠0,那么这个两位数叫做“互异数”,∴“互异数”为21,故答案为:21;②W(36)=(36+63)÷11=9,W(10m+n)=(10m+n+10n+m)÷11=m+n;故答案为:9,m+n;(2)∵W(10m+n)=(10m+n+10n+m)÷11=m+n,且W(b)=7,∴x+y=7①,∵W(c)=13,∴x+2+2y-1=13②,联立①②解得,故b=10×2+5=25,c=10×(2+2)+2×5-1=49;(3)∵W(d)+W(e)<25,∴x+x+3+(x-2+3)<25,

解得x<7,∵x-2>0,x+3<9,∴2<x<6,∴2<x<6,且x为正整数,∴x=3,4,5,当x=5时e为33不是互异数,舍去,故答案为:3或4;(4)当x=0时,x+4=4,此时f为40不是互异数;当x=1时,x+4=5,此时f为51是互异数,W(f)=x+4+x=2x+4=6;当x=2时,x+4=6,此时f为62是互异数,W(f)=x+4+x=2x+4=8;当x=3时,x+4=7,此时f为73是互异数,W(f)=x+4+x=2x+4=10;当x=4时,x+4=8,此时f为84是互异数,W(f)=x+4+x=2x+4=12;∵满足W(f)<t的互异数有且仅有3个,∴10<t≤12,故答案为:10<t≤12.【点睛】本题以新定义为背景考查了一元一次不等式的应用和二元一次方程的应用,解题的关键是根据新定义列出方程和不等式.24.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性质可得∠AFD=∠FDM+∠FMD=90°-∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.25.(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150°【分析】(1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论