江西省三新协同教研共同体2025-2026学年高一上学期12月月考数学试题及答案_第1页
江西省三新协同教研共同体2025-2026学年高一上学期12月月考数学试题及答案_第2页
江西省三新协同教研共同体2025-2026学年高一上学期12月月考数学试题及答案_第3页
江西省三新协同教研共同体2025-2026学年高一上学期12月月考数学试题及答案_第4页
江西省三新协同教研共同体2025-2026学年高一上学期12月月考数学试题及答案_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1

2

3

4

2025年“三新"协同教研共同体高一联考

数学试卷参考答案

题号1234567891011

答案BDACCDACCDABCACD

1.B

【详解】“A={0,1,2},B=[—1,1],:A∩B={0,1},故选B.

2.D

【详解】全称量词命题的否定是存在量词命题,故V父∈Q,有父2十父十2∈Q的否定为3父∈

2

Q,使父十父十2呋Q,故选D.

3.A

【详解】当父时,3父—1=1为整数,故父不一定是整数,而当父是整数时,3父—1一定是整

数,所以“3父—1为整数”是“父为整数”的必要不充分条件,故选A.

4.C

【详解】令t=父2—父,则y=3t,“t=父2—父=上单调递减,在

2—

上单调递增,且y=3t在其定义域内单调递增,:f(父)=3父父的单调递减区间为

,故选C.

5.C

【详解】“f(父:当父0∈[0,1)时,f(父0)=父0十1∈[1,2),

:f(f(父0))=f(父0十1)=3—2(父0十1)=1—2父0∈[0,1),

则父,故选C.

6.D

【详解】“m>0,n>0,父=m十,y=十n,:父十y=m十十十n=(m十十(n十

当且仅当m=1,n=2时,等号成立,:父十y≥6,:父,y中

至少有一个不小于3,则max{父,y}的最小值为3,故选D.

7.A

【详解】“指数函数y=0.6父在R上单调递减,:0.60.5>0.60.6,又幂函数y=父0.6在(0,

十∞)上单调递增,:0.60.6>0.50.6,:0.60.5>0.50.6,即a>b,

【高—数学●参考答案第1页(共6页)】26-135A(B卷)

“b,即C>b,

:a>C>b,故选A.

8.C

11

【详解】因为f(父y)十=f(父)十f(y),令父=y=1,得f(1)十=f(1)十f(1),即f(1)=

22

,令父=y=—1,得f十f,即f,所以A正确;

令y=—1,得f十f=f即f(—父)=f(父),所以f(父)为

偶函数,所以B正确;

任取父1,父2∈(—∞,0)且父1>父2,易得f—f=f所以f(父)在

(—∞,0)上单调递减,所以f(—2024)>f(—2023),所以D正确;

由f可得|父十2|<1且父十2≠0,得—3<父<—2或—2<父<—1,所以C错误.

故选C.

9.CD

【详解】由题意知a>1,

“loga父>1,:loga父>logaa,

3

:父>a,:a≤2,即a可取或2,

2

故选CD.

10.ABC

【详解】由图知,A,B,C选项都对,而D选项,当父<0时,还有一个交

点,一共3个交点.

11.ACD

【详解】“f(父)十g(父)=2e父,:g(父)—f(父)=2e—父,

父—父

父—父父—父e—e

:f(父)=e—e,g(父)=e十e,:h(父)=,

e父十e—父

显然h(父)为奇函数,:A选项正确;

g(父)为偶函数,不可能单调递增,:B选项错误;

而h

“e2父十1∈(1,十∞),:h(父)∈(—1,1),:C选项正确;

【高—数学●参考答案第2页(共6页)】26-135A(B卷)

h—h

(e2父—1)(e2y—1)h(父)—h(y)e2父—e2ye2(父—y)—1

1—h(父)h(y)=1—,==,:h(父—y)=

(e2父十1)(e2y十1)1—h(父)h(y)e2父十e2ye2(父—y)十1

h(父)—()

,:D选项正确.故选ACD.

1—h(父)

12.—3

1

【详解】因为2a=,所以a=—3.

8

13.15

14.(0,2)

【详解】(方法一)不等式可化为f(父)>父2—2父十3,

因为f(父)在(—∞,1)上单调递增,在(1,十∞)上单调递减,所以设g(父)=父2—2父十3=

(父—1)2十2,g(父)在(—∞,1)上单调递减,在(1,十∞)上单调递增,且f(0)=f(2)=3,

g(0)=g(2)=3,利用两函数图象可得父∈(0,2).

(方法二)f(父)在(1,十∞)上单调递减,在(—∞,1)上单调递增,

令g(父)=f(父)—(父—1)2,所以g(父)的图象关于直线父=1对称,且在(1,十∞)上单调递

减,原不等式可化为f(父)—(父—1)2>2,因为g(2)=2,所以g(父)>g(2),

所以|父—1|<1,即父∈(0,2).

15.(1){父|父≥—1}(2)(—,1)

【详解】(1)当a=1时,A={—1,3}.………3分

“B={父|父>—1},

:AUB={父|父≥—1}.……………………6分

(2)“A={父|(父十a)(父—3a)=0},B={父|父>—1},且A=B,

:实数a的取值范围为(—,1).………13分

(2)m∈(0,十∞)

【详解】(1)令log2父=t∈R,且函数y=log2父在(0,十∞)上单调递增,则方程(t—1)(t—2)

—2b=t2—3t十2—2b=0在R上有两个不同的实数根,…………………2分

1

:Δ=9—4(2—2b)=8b十1>0,即b>—,

8

【高—数学●参考答案第3页(共6页)】26-135A(B卷)

:b…………7分

log………………8分

由f(父)<mlog2父,得(log2父—1)(log2父—2)<mlog2父.

令t=log2父,由父∈[2,4],得t∈[1,2].…………………9分

由题意可知,对于t∈[1,2],<mt恒成立,即t十m恒成立.…11分

令h=t十易知h(t)在[1,\]上单调递减,在[\,2]上单调递增,

且h(1)=0,h(2)=0,

:当t∈[1,2]时,h(t)max=0,……………13分

:m>0,即m∈(0,十∞).………………15分

17.(1)(0,1),(1,1)

【详解】(1)“f(父)=a(父2—父)十1=a父(父—1)十1(a∈R),

:当父(父—1)=0,即父=0或父=1时,y=1,与a无关,………………4分

:f(父)的图象恒过定点(0,1),(1,1).……………………6分

(2)(方法一)“g(父)=(父—3)(父—4),a=1,

:H(父)=g(父).[f(父)—1]=(父—3)(父—4)父(父—1),

令t=父—2,则H(父)=(父—3)(父—4)父(父—1)=(t—1)(t—2)(t十2)(t十1)=(t2—1)(t2

—4)...............................................................................................................................................10分

2

令m=t2(m≥0),则(t2—1)(t2—4)=(m—1)(m—4)=m2—5m十4=(m——≥

9

—,………………………14分

4

9

的最小值为分

:H(父)—.…………………15

4

(方法二)“g(父)=(父—3)(父—4),a=1,

:H(父)=g(父).[f(父)—1]=(父—3)(父—4)父(父—1),

又由于函数图象左右平移不会改变函数的最值,:H(父)与H(父十2)的最值一致.…8分

“H(父十2)=(父—1)(父—2)(父十2)(父十1)=(父2—1)(父2—4),……10分

2

令m=父2(m≥0),则(父2—1)(父2—4)=(m—1)(m—4)=m2—5m十4=(m——≥

9

—,………………………14分

4

99

:H(父十2)的最小值为—,:H(父)的最小值为—.………………15分

44

【高—数学●参考答案第4页(共6页)】26-135A(B卷)

18.(1)(1—log32,十∞)(2)3(3)[—3,1]

33

1—父父父2父父

【详解】(1)由g(父)=>得,3十1<2×3即,2×(3)—3—3=(3十

31—父十12×3父

1)(2×3父—3)>0,

333

即3>,父>log3=1—log32,:不等式g(父)>的解集为(1—log32,十∞).……

222×父3

……………5分

333×3父—13

(2)“g(父)十g(2—父)=十=十=3,

31—父十13父—1十11十3父—13父—1十1

:g(父)十g(2—父)=3.……………………10分

2

(3)对任意的父1,父2∈R,且父1十父2>2,不等式g(父1)十g(父2)>t十2t恒成立,

易知函数g(父)在R上单调递增,“父1十父2>2,即父1>2—父2,

:g(父1)>g(2—父2),……………………12分

由(2)可知g(父1)>g(2—父2)=3—g(父2),……………14分

2

即g(父1)十g(父2)>3,:t十2t≤3,……………………15分

即t2十2t—3=(t十3)(t—1)≤0,解得—3≤t≤1,

故实数t的取值范围为[—3,1].…………17分

19.(1)13(2)2

【详解】(1)“g(s,t)=s2十t2,:g(—3,2)=13.…………3分

(2)“s十t=2st,:2st≥2\,

则\≥1,即st≥1.…………5分

“g(s,t)=6st—(s十t)2,

而st≥1,:g(s,t)≤2,……………………7分

则2是函数g(s,t)的上确界.………………8分

“ks

:k十……………9分

a(t2十at—1)a(t2十at—1)

:k十

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论