四川省会理一中2026届高二数学第一学期期末质量检测模拟试题含解析_第1页
四川省会理一中2026届高二数学第一学期期末质量检测模拟试题含解析_第2页
四川省会理一中2026届高二数学第一学期期末质量检测模拟试题含解析_第3页
四川省会理一中2026届高二数学第一学期期末质量检测模拟试题含解析_第4页
四川省会理一中2026届高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省会理一中2026届高二数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知一个几何体的三视图如图,则其外接球的体积为()A. B.C. D.2.已知条件:,条件:表示一个椭圆,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.如图,在正方体中,点,分别是面对角线与的中点,若,,,则()A. B.C. D.4.已知双曲线的左、右焦点分别为,,为坐标原点,为双曲线在第一象限上的点,直线,分别交双曲线的左,右支于另一点,,若,且,则双曲线的离心率为()A. B.3C.2 D.5.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27186.函数f(x)=-1+lnx,对∀x0,f(x)≥0成立,则实数a的取值范围是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)7.已知数列的前n项和为,,,则()A. B.C. D.8.已知,分别为椭圆的左右焦点,为坐标原点,椭圆上存在一点,使得,设的面积为,若,则该椭圆的离心率为()A. B.C. D.9.如图所示,用3种不同的颜色涂入图中的矩形A,B,C中,要求相邻的矩形不能使用同一种颜色,则不同的涂法有()ABCA.3种 B.6种C.12种 D.27种10.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为、,其中,.如果这时气球的高度,则河流的宽度BC为()A. B.C. D.11.设是空间一定点,为空间内任一非零向量,满足条件的点构成的图形是()A.圆 B.直线C.平面 D.线段12.设.若,则=()A. B.C. D.e二、填空题:本题共4小题,每小题5分,共20分。13.等差数列前3项的和为30,前6项的和为100,则它的前9项的和为______.14.以点为圆心,为半径的圆的标准方程是_____________.15.若实数、满足,则的取值范围为___________.16.函数,则函数在处切线的斜率为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:经过点,且离心率为(1)求椭圆C的方程;(2)是否存在⊙O:,使得⊙O的任意切线l与椭圆交于A,B两点,都有.若存在,求出r的值,并求此时△AOB的面积S的取值范围;若不存在,请说明理由18.(12分)已知点是抛物线C:上的点,F为抛物线的焦点,且,直线l:与抛物线C相交于不同的两点A,B.(1)求抛物线C的方程;(2)若,求k的值.19.(12分)设点是抛物线上异于原点O的一点,过点P作斜率为、的两条直线分别交于、两点(P、A、B三点互不相同)(1)已知点,求的最小值;(2)若,直线AB的斜率是,求的值;(3)若,当时,B点的纵坐标的取值范围20.(12分)长方体中,,点分别在上,且.(1)求证:平面;(2)求平面与平面所成角的余弦值.21.(12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直线BC与平面PCD所成角的正弦值为.(1)求证:平面PCD⊥平面PAC;(2)求平面PAB与平面PCD所成锐二面角的余弦值.22.(10分)已知几何体中,平面平面,是边长为4的菱形,,是直角梯形,,,且(1)求证:;(2)求平面与平面所成角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据三视图还原几何体,将几何体补成长方体,计算出几何体的外接球直径,结合球体体积公式即可得解.【详解】根据三视图还原原几何体,如下图所示:由图可知,该几何体三棱锥,且平面,将三棱锥补成长方体,所以,三棱锥的外接球直径为,故,因此,该几何体的外接球的体积为.故选:D【点睛】方法点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解(2)若球面上四点P,A,B,C构成的三条线段两两互相垂直,一般把有关元素“补形”成为一个球内接长方体,利用求解2、B【解析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;而表示一个椭圆,则成立,必要性成立.所以是的必要不充分条件.故选:B3、D【解析】由空间向量运算法则得,利用向量的线性运算求出结果.【详解】因为点,分别是面对角线与的中点,,,,所以故选:D.4、D【解析】由双曲线的定义可设,,由平面几何知识可得四边形为平行四边形,三角形,用余弦定理,可得,的方程,再由离心率公式可得所求值【详解】由双曲线的定义可得,由,可得,,结合双曲线性质可以得到,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故,对三角形,用余弦定理,得到,结合,可得,,,代入上式子中,得到,即,结合离心率满足,即可得出,故选:D【点睛】本题考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.5、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.6、B【解析】由导数求得的最小值,由最小值非负可得的范围【详解】定义域是,,若,则在上恒成立,单调递增,,不合题意;若,则时,,递减,时,,递增,所以时,取得极小值也是最小值,由题意,解得故选:B7、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D8、D【解析】由可得直角三角形,故,且,结合,联立可得,即得解【详解】由题意,故为直角三角形,,又,,又为直角三角形,故,,即,.故选:D.9、C【解析】根据给定信息,按用色多少分成两类,再分类计算作答.【详解】计算不同的涂色方法数有两类办法:用3种颜色,每个矩形涂一种颜色,有种方法,用2色,矩形A,C涂同色,有种方法,由分类加法计数原理得(种),所以不同的涂法有12种.故选:C10、D【解析】由题意得,,,然后在和求出,从而可求出的值【详解】如图,由题意得,,,在中,,在中,,所以,故选:D11、C【解析】根据法向量的定义可判断出点所构成的图形.【详解】是空间一定点,为空间内任一非零向量,满足条件,所以,构成的图形是经过点,且以为法向量的平面.故选:C.【点睛】本题考查空间中动点的轨迹,考查了法向量定义的理解,属于基础题.12、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、210【解析】依题意,、、成等差数列,从而可求得答案【详解】∵等差数列{an}的前3项和为30,前6项和为100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差数列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【点睛】本题考查等差数列的性质,熟练利用、、成等差数列是关键,属于中档题14、【解析】直接根据已知写出圆的标准方程得解.【详解】解:由题得圆的标准方程为.故答案为:15、【解析】直接利用换元法以及基本不等式,求出结果【详解】解:设,由于,所以,由于,(当且仅当时取等号)所以(当且仅当时取等号),(当且仅当时取等号),故,,所以,整理得:故的取值范围为的取值范围故答案为:16、【解析】根据导数的几何意义求解即可.【详解】解:因为,所以,所以,所以函数在处切线的斜率为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,,【解析】(1)利用离心率和椭圆所过点列出方程组,求出,求出椭圆方程;(2)假设存在,分切线斜率存在和不存在分类讨论,根据向量数量积为0求出r的值,表达出△AOB的面积,利用基本不等式求出的取值范围,进而求出△AOB面积的取值范围.【小问1详解】因为椭圆C:的离心率,且过点所以解得所以椭圆C的方程为【小问2详解】假设存在⊙O:满足题意,①切线方程l的斜率存在时,设切线方程l:y=kx+m与椭圆方程联立,消去y得,(*)设,,由题意知,(*)有两解所以,即由根与系数的关系可得,所以因为,所以,即化简得,且,O到直线l的距离所以,又,此时,所以满足题意所以存在圆的方程为⊙O:△AOB的面积,又因为当k≠0时当且仅当即时取等号又因为,所以,所以当k=0时,②斜率不存在时,直线与椭圆交于两点或两点易知存在圆的方程为⊙O:且综上,所以【点睛】求解圆锥曲线相关的三角形或四边形面积取值范围问题,需要先设出变量,表达出面积,利用基本不等式或者配方,导函数等求出最值,求出取值范围,特别注意直线斜率存在和不存在的情况,需要分类讨论.18、(1);(2)1或.【解析】(1)根据抛物线的定义,即可求得p值;(2)由过抛物线焦点的直线的性质,结合抛物线的定义,即可求出弦长AB【详解】(1)抛物线C:的准线为,由得:,得.所以抛物线的方程为.(2)设,,由,,∴,∵直线l经过抛物线C的焦点F,∴解得:,所以k的值为1或.【点睛】考核抛物线的定义及过焦点弦的求法19、(1);(2)3;(3);【解析】(1)根据两点之间的距离公式,结合点坐标满足抛物线,构造关于的函数关系,求其最值即可;(2)根据题意,求得点的坐标,设出的直线方程,联立抛物线方程,利用韦达定理求得点坐标,同理求得点坐标,再利用斜率计算公式求得即可;(3)根据题意,求得点的坐标,利用坐标转化,求得关于的一元二次方程,利用其有两个不相等的实数根,即可求得的取值范围.【小问1详解】因为点在抛物线上,故可得,又,当且仅当时,取得最小值.故的最小值为.【小问2详解】当时,故可得,即点的坐标为;则的直线方程为:,联立抛物线方程:,可得:,故可得,解得:,又故可得同理可得:,又的斜率,即.故为定值.【小问3详解】当时,可得,此时,因为两点在抛物线上,故可得,,因为,故可得,整理得:,,因为三点不同,故可得,则,即,,此方程可以理解为关于的一元二次方程,因为,故该方程有两个不相等的实数根,,即,故,则,解得或.故点纵坐标的取值范围为.【点睛】本题考察直线与抛物线相交时范围问题,定值问题,解决问题的关键是合理且充分的利用韦达定理,本题计算量较大,属综合困难题.20、(1)证明见解析.(2)【解析】(1)根据线面垂直的性质和判定可得证;(2)以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系,由面面角的空间向量求解方法可得答案.【小问1详解】证明:长方体中,平面,又平面,又平面,又平面同理可证,而平面,平面【小问2详解】解:以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系.从而,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,,则,从而,令,则,得平面的一个法向量为由图示得平面与平面所成的角为锐角,平面与平面所成的角的余弦值为21、(1)证明见解析(2)【解析】(1)取的中点,连接,证明,由线面垂直的判定定理可证明平面,再利用面面垂直的判定定理可证得结论,(2)过点作于,以为原点,建立空间直角坐标系,如图所示,设,先根据直线BC与平面PCD所成角的正弦值为,求出,然后再求出平面PAB的法向量,利用向量的夹角公式可求得结果【小问1详解】证明:取的中点,连接,因为AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四边形为平行四边形,所以,所以,因为平面,平面,所以,因为,所以平面,因为平面,所以平面平面,【小问2详解】过点作于,以为原点,建立空间直角坐标系,如图所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,则,所以设因为平面,所以所以,设平面的法向量为,则,令,则,因为直线BC与平面PCD所成角的正弦值为,所以,解得,所以,,设平面的法向量为,因为,所以,令,则,所以,所以平面PAB与平面PCD所成锐二面角的余弦值为22、(1)证明见解析;(2).【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论