版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆州市公安县2026届数学高二上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若两个不同平面,的法向量分别为,,则()A.,相交但不垂直 B.C. D.以上均不正确2.设等差数列前项和为,若是方程的两根,则()A.32 B.30C.28 D.263.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.1444.已知某班有学生48人,为了解该班学生视力情况,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本已知3号,15号,39号学生在样本中,则样本中另外一个学生的编号是()A.26 B.27C.28 D.295.加斯帕尔·蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).则椭圆的蒙日圆的半径为()A.3 B.4C.5 D.66.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称7.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数8.若直线l的倾斜角是钝角,则l的方程可能是()A. B.C. D.9.若1,m,9三个数成等比数列,则圆锥曲线的离心率是()A.或 B.或2C.或 D.或210.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.11.已知且,则下列不等式恒成立的是A. B.C. D.12.已知椭圆C:的两个焦点分别为,,椭圆C上有一点P,则的周长为()A.8 B.10C. D.12二、填空题:本题共4小题,每小题5分,共20分。13.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,若该棱锥的体积为,则该正方体的边长为___________.14.已知点,平面过,,三点,则点到平面的距离为________.15.在下列三个问题中:①甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,如果规定:同时出现正面或反面算甲胜,一个正面、一个反面算乙胜,那么这个游戏是公平的;②掷一枚骰子,估计事件“出现三点”的概率,当抛掷次数很大时,此事件发生的频率接近其概率;③如果气象预报1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正确的是___________.(用序号表示)16.已知直线与双曲线无公共点,则双曲线离心率的取值范围是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角A,B,C的对边分别为a,b,c.(1)若,,,求边长c;(2),,,求角C.18.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x经过点A(1,2),直线l:y=kx+b与抛物线C交于M,N两点.(1)若,求直线l的方程;(2)当AM⊥AN时,若对任意满足条件的实数k,都有b=mk+n(m,n为常数),求m+2n的值.19.(12分)求下列不等式的解集:(1);(2).20.(12分)如图,四棱锥,,,,为等边三角形,平面平面ABCD,Q为PB中点(1)求证:平面平面PBC;(2)求平面PBC与平面PAD所成二面角的正弦值21.(12分)已知抛物线的焦点是椭圆的一个焦点,直线交抛物线E于两点(1)求E的方程;(2)若以BC为直径的圆过原点O,求直线l的方程22.(10分)如图,四边形是一块边长为4km正方形地域,地域内有一条河流,其经过的路线是以中点为顶点且开口向右的抛物线的一部分(河流宽度忽略不计),某公司准备投资一个大型矩形游乐场.(1)设,矩形游乐园的面积为,求与之间的函数关系;(2)试求游乐园面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由向量数量积为0可求.【详解】∵,,∴,∴,∴,故选:B.2、A【解析】根据给定条件利用韦达定理结合等差数列性质计算作答.【详解】因是方程的两根,则又是等差数列的前项和,于是得,所以.故选:A3、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A.4、B【解析】由系统抽样可知抽取一个容量为4的样本时,将48人按顺序平均分为4组,由已知编号可得所求的学生来自第三组,设其编号为,则,进而求解即可【详解】由系统抽样可知,抽取一个容量为4的样本时,将48人分为4组,第一组编号为1号至12号;第二组编号为13号至24号;第三组编号为25号至36号;第四组编号为37号至48号,故所求的学生来自第三组,设其编号为,则,所以,故选:B【点睛】本题考查系统抽样的编号,属于基础题5、A【解析】由蒙日圆的定义,确定出圆上的一点即可求出圆的半径.【详解】由蒙日圆的定义,可知椭圆的两条切线的交点在圆上,所以,故选:A6、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.7、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.8、A【解析】根据直线方程,求得直线斜率,再根据倾斜角和斜率的关系,即可判断和选择.【详解】若直线的倾斜角为,则,当时,为钝角,当,,当,为锐角;当不存在时,倾斜角为,对A:,显然倾斜角为钝角;对B:,倾斜角为锐角;对C:,倾斜角为锐角;对D:不存在,此时倾斜角为直角.故选:A.9、D【解析】运用等比数列的性质可得,再讨论,,求出曲线的,,由离心率公式计算即可得到【详解】三个数1,,9成等比数列,则,解得,,当时,曲线为椭圆,则;当时,曲线为为双曲线,则离心率故选:10、D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.11、C【解析】∵且,∴∴选C12、B【解析】根据椭圆的定义可得:,所以的周长等于【详解】因为,,所以,故的周长为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据体积公式直接计算即可.【详解】设正方体边长为,则,解得.故答案为:14、【解析】先求得平面ABC的一个法向量,然后由求解.【详解】因为,,,,所以,设平面ABC的一个法向量为,则,即,令,则,所以则点到平面的距离为,故答案:15、①②【解析】以甲乙获胜概率是否均为来判断游戏是否公平,并以此来判断①的正确性;以频率和概率的关系来判断②③的正确性.【详解】①中:甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,可得4种可能的结果:(正,正),(正,反),(反,正),(反,反)则“同时出现正面或反面”的概率为,“一个正面、一个反面”的概率为即甲乙二人获胜的概率均为,那么这个游戏是公平的.判断正确;②中:“掷一枚骰子出现三点”是一个随机事件,当抛掷次数很大时,此事件发生的频率会稳定于其概率值,故此事件发生的频率接近其概率.判断正确;③中:气象预报1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出现下雨的天数是随机的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判断错误.故答案为:①②16、【解析】联立直线得,由无公共点得,进而得,即可求出离心率的取值范围.【详解】联立直线与双曲线可得,整理得,显然,由方程无解可得,即,则,,又离心率大于1,故离心率的取值范围是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据余弦定理可求得答案;(2)根据正弦定理和三角形的内角和可求得答案.【小问1详解】解:由余弦定理得:,所以.【小问2详解】解:由正弦定理得:得,所以或120°,又因为,所以,所以或即或.18、(1)(2)3或【解析】(1)由可得,则可得直线为,设,然后将直线方程代入抛物线方程中消去,再利用根与系数的关系,由可得,三个式子结合可求出,从而可得直线方程,(2)将直线方程代入抛物线方程中消去,再利用根与系数的关系表示出,再结合直线方程表示出,由AM⊥AN可得,化简结合前面的式子可求出或,从而可可求出的值,进而可求得答案【小问1详解】因为A(1,2),,所以,则直线为,设,由,得,由,得则,因为,所以,所以,所以,所以,解得,所以直线的方程为,即,【小问2详解】设,由,得,由,得,则,所以,,因为AM⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或19、(1)(2)【解析】(1)根据一元二次不等式的解法求得不等式的解集.(2)根据分式不等式的解法求得不等式的解集.【小问1详解】不等式等价于,解得.∴不等式的解集为.【小问2详解】不等式等价于,解得或.∴不等式的解集为.20、(1)证明见解析(2)【解析】(1)取的中点为,连接,可证,从而可利用面面垂直的判定定理可证平面平面.(2)建立如图所示的空间直角坐标系,求出平面的法向量、平面的法向量后可得二面角的正弦值.【小问1详解】如图,取的中点为S,连接,因为为等边三角形,故,,而平面平面ABCD,平面平面,平面,故平面,而平面,故,而,故,因,故平面,因平面,故,因,故平面,而平面,故平面平面.【小问2详解】连接,因为,故四边形为平行四边形,而,故四边形为矩形,所以,由(1)可得平面,故建立如图所示的空间直角坐标系,则所以,,设平面的法向量为,则即,取,则,设平面的法向量为,则即,取,则,故,故平面PBC与平面PAD所成二面角的正弦值为.21、(1);(2).【解析】(1)利用椭圆的焦点与抛物线的焦点相同,列出方程求解即可(2)设,、,,联立直线与抛物线方程,利用韦达定理,通过,求出,得到直线方程【小问1详解】由题意知:,,∴的方程是【小问2详解】设,、,,由题意知,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理管理中的团队建设与领导力
- VTE护理中的患者安全
- 大丰市小海中学高二生物三同步课程讲义第讲植物的激素调节
- 2025秋人教版初中美术九年级上册知识点及期末测试卷及答案
- 2025年保密信息交换协议
- 基于人工智能的地理信息挖掘与分析
- 复杂背景手势追踪
- 基于同态加密的图像敏感信息处理
- 土地权属登记信息化
- 2026 年中职康复治疗技术(康复管理)试题及答案
- 动物尸体剖检(动物病理学课件)
- 客舱服务(空中乘务专业)全套教学课件
- 光伏电站收益率测算模型(带财务表)
- 银行个人贷款抵押合同
- 《羽毛球运动》优质课件PPT
- 三轴转台仿真设计设计说明书
- 2015年版干部履历表
- 陶棍陶板考察报告
- q gw2sjss.65金风风力发电机组防腐技术rna部分归档版
- 陕西北元化工集团有限公司 100 万吨 - 年聚氯乙烯项目竣工验收监测报告
- 向知识分子介绍佛教剖析
评论
0/150
提交评论