版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市琅岐中学2026届数学高二上期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正三棱柱各棱长均为为棱的中点,则点到平面的距离为()A. B.C. D.12.函数在上的最大值是A. B.C. D.3.已知数列满足,则()A. B.1C.2 D.44.设两个变量与之间具有线性相关关系,相关系数为,回归方程为,那么必有()A.与符号相同 B.与符号相同C.与符号相反 D.与符号相反5.已知点是椭圆的左右焦点,椭圆上存在不同两点使得,则椭圆的离心率的取值范围是()A. B.C. D.6.如图,P为圆锥的顶点,O是圆锥底面的圆心,圆锥PO的轴截面PAE是边长为2的等边三角形,是底面圆的内接正三角形.则()A. B.C. D.7.已知圆与抛物线的准线相切,则实数p的值为()A.2 B.6C.3或8 D.2或68.已知实数,满足则的最大值为()A.-1 B.0C.1 D.29.已知双曲线的右焦点为,渐近线为,,过的直线与垂直,且交于点,交于点,若,则双曲线的离心率为()A. B.C.2 D.10.某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38 B.40C.46 D.5811.已知椭圆C:()的长轴的长为4,焦距为2,则C的方程为()A B.C. D.12.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知,命题p:,;命题q:,,且为真命题,则a的取值范围为______14.两个人射击,互相独立.已知甲射击一次中靶概率是0.6,乙射击一次中靶概率是0.3,现在两人各射击一次,中靶至少一次就算完成目标,则完成目标的概率为_____________15.已知数列满足,则的前20项和___________.16.容积为V圆柱形密封金属饮料罐,它的高与底面半径比值为___________时用料最省.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的二项展开式中所有项的二项式系数之和为,(1)求的值;(2)求展开式的所有有理项(指数为整数),并指明是第几项18.(12分)已知椭圆C:的长轴长为,P是椭圆上异于顶点的一个动点,O为坐标原点,A为椭圆C的上顶点,Q为PA的中点,且直线PA与直线OQ的斜率之积恒为-2.(1)求椭圆C的方程;(2)若斜率为k且过上焦点F的直线l与椭圆C相交于M,N两点,当点M,N到y轴距离之和最大时,求直线l的方程.19.(12分)已知圆.(1)过点作圆的切线,求切线的方程;(2)若直线过点且被圆截得的弦长为2,求直线的方程.20.(12分)在矩形中,是的中点,是上,,且,如图,将沿折起至:(1)指出二面角的平面角,并说明理由;(2)若,求证:平面平面;(3)若是线段的中点,求证:直线平面;21.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由22.(10分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若,且,讨论函数的零点个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】建立空间直角坐标系,利用点面距公式求得正确答案.【详解】设分别是的中点,根据正三棱柱的性质可知两两垂直,以为原点建立如图所示空间直角坐标系,,,.设平面的法向量为,则,故可设,所以点到平面的距离为.故选:C2、D【解析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可,结合函数的单调性求出的最大值即可【详解】函数的导数令可得,可得上单调递增,在单调递减,函数在上的最大值是故选D【点睛】本题考查了函数的单调性、最值问题,是一道中档题3、B【解析】根据递推式以及迭代即可.【详解】由,得,,,,,,.故选:B4、A【解析】利用相关系数的性质,分析即得解【详解】相关系数r为正,表示正相关,回归直线方程上升,r为负,表示负相关,回归直线方程下降,与r的符号相同故选:A5、C【解析】先设点,利用向量关系得到两点坐标之间的关系,再结合点在椭圆上,代入方程,消去即得,根据题意,构建的齐次式,解不等式即得结果.【详解】设,由得,,,即,由在椭圆上,故,即,消去得,,根据椭圆上点满足,又两点不同,可知,整理得,故,故.故选:C.【点睛】关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到一组等量关系(齐次式),进而求解离心率或范围.6、B【解析】先求出,再利用向量的线性运算和数量积计算求解.【详解】解:由题得,,故选:B7、D【解析】由抛物线准线与圆相切,结合抛物线方程,令求切线方程且抛物线准线方程为,即可求参数p.【详解】圆的标准方程为:,故当时,有或,所以或,得或6故选:D8、D【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数,即可得到结果【详解】由约束条件画出可行域如图,化目标函数为,由图可知当直线过点时,直线在轴上的截距最小,取得最大值2.故选:D9、C【解析】由题设易知是的中垂线,进而可得,结合双曲线参数关系及离心率公式求双曲线的离心率即可.【详解】由题意,是的中垂线,故,由对称性得,则,故,∴.故选:C.10、B【解析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.11、D【解析】由题设可得求出椭圆参数,即可得方程.【详解】由题设,知:,可得,则,∴C的方程为.故选:D.12、D【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出命题p,q为真命题时的a的取值范围,根据为真可知p,q都是真命题,即可求得答案.【详解】命题p:,为真时,有,命题q:,为真时,则有,即,故为真命题时,且,即,故a的取值范围为,故答案为:14、72【解析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,若甲、乙两个各射击1次,至少有一人命中目标的概率为.故答案为:15、135【解析】直接利用数列的递推关系式写出相邻四项之和,进而求出数列的和.【详解】数列满足,所以,故,当时,,当时,,,当时,,所以.故答案为:135.16、【解析】设圆柱的底面半径为,高为,容积为,由,得到,进而求得表面积,结合不等式,即可求解.【详解】设圆柱的底面半径为,高为,容积为,则,即有,可得圆柱的表面积为,当且仅当时,即时最小,即用料最省,此时,可得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由二项式系数和公式可得答案;(2)求出的通项,利用的指数为整数可得答案.【小问1详解】的二项展开式中所有项的二项式系数之和,所以.【小问2详解】,因此时,有理项,有理项是第一项和第七项.18、(1)(2)【解析】(1)设点,求出直线、直线的斜率相乘可得,结合可得答案;(2)设直线l的方程为与椭圆方程联立,代入得,设,再利用基本不等式可得答案.【小问1详解】由题意可得,,即,则,设点,∵Q为的中点,∴,∴直线斜率,直线的斜率,∴,又∵,∴,则,解得,∴椭圆C的方程为.【小问2详解】由(1)知,设直线l的方程为,联立化简得,,设,则,易知M,N到y轴的距离之和为,,设,∴,当且仅当即时等号成立,所以当时取得最大值,此时直线l的方程为.19、(1);(2)或.【解析】(1)根据直线与圆相切,求得切线的斜率,利用点斜式即可写出切线方程;(2)利用弦长公式,结合已知条件求得直线的斜率,即可求得直线方程.【小问1详解】圆,圆心,半径,又点的坐标满足圆方程,故可得点在圆上,则切线斜率满足,又,故满足题意的切线斜率,则过点的切线方程为,即.【小问2详解】直线过点,若斜率不存在,此时直线的方程为,将其代入可得或,故直线截圆所得弦长为满足题意;若斜率存在时,设直线方程为,则圆心到直线的距离,由弦长公式可得:,解得,也即,解得,则此时直线的方程为:.综上所述,直线的方程为或.20、(1)为二面角的平面角,理由见解析(2)证明见解析(3)证明见解析【解析】(1)根据,结合二面角定义得到答案.(2)证明平面得到,得到平面,得到证明.(3)延长,交于点,连接,证明即可.【小问1详解】连接,则,,故为二面角的平面角.【小问2详解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小问3详解】延长,交于点,连接,易知,故故是的中点,是线段的中点,故,平面,且平面,故直线平面.21、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以22、(1).(2)答案见解析.【解析】(1)求导函数,求得,,由此可求得曲线在点处的切线方程;(2)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皮肤周护理的专家建议
- 白血病患者的家庭护理和家庭照顾
- (新教材)2026年沪科版八年级下册数学 17.3 一元二次方程根的判别式 课件
- 阿尔茨海默症患者的心理护理
- 中医外科护理团队建设与管理
- 水路改造与管道安装施工技术规程
- 复核流程动态调整
- 2025年AI珠宝设计软件与AR试戴技术协同应用
- 2025年智能外语作文批改系统语法错误识别准确率新突破
- 基于深度学习的恶意代码检测模型优化
- 2025年山西大地环境投资控股有限公司社会招聘116人备考题库有答案详解
- 2026元旦主题晚会倒计时快闪
- 物理试卷答案浙江省9+1高中联盟2025学年第一学期高三年级期中考试(11.19-11.21)
- 2025年交管12123学法减分考试题附含答案
- 俄语口语课件
- 2025广西自然资源职业技术学院下半年招聘工作人员150人(公共基础知识)综合能力测试题带答案解析
- django基于Hadoop的黑龙江旅游景点系统-论文11936字
- 2025-2026学年广东省深圳市福田中学高一(上)期中物理试卷(含答案)
- 口腔解剖生理学牙的一般知识-医学课件
- 施工现场安全、文明考核管理办法
- 香蕉购买协议书模板
评论
0/150
提交评论