广东省深圳市龙文教育2026届数学高一上期末综合测试模拟试题含解析_第1页
广东省深圳市龙文教育2026届数学高一上期末综合测试模拟试题含解析_第2页
广东省深圳市龙文教育2026届数学高一上期末综合测试模拟试题含解析_第3页
广东省深圳市龙文教育2026届数学高一上期末综合测试模拟试题含解析_第4页
广东省深圳市龙文教育2026届数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市龙文教育2026届数学高一上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中为偶函数的是()A. B.C. D.2.若函数且,则该函数过的定点为()A. B.C. D.3.已知,,且,则A.2 B.1C.0 D.-14.如果关于x的不等式x2<ax+b的解集是{x|-1<x<3},那么ba等于()A.-9 B.9C.- D.-85.当生物死后,它体内的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半.2010年考古学家对良渚古城水利系统中一条水坝的建筑材料草裹泥)上提取的草茎遗存进行碳14检测,检测出碳14的残留量约为初始量的,以此推断此水坝建成的年代大概是公元前()(参考数据:,)A.年 B.年C.年 D.年6.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.27.已知函数在上单调递减,则实数a的取值范围是A. B.C. D.8.空间直角坐标系中,已知点,则线段的中点坐标为A. B.C. D.9.已知点(a,2)在幂函数的图象上,则函数f(x)的解析式是()A. B.C. D.10.若函数则下列说法错误的是()A.是奇函数B.若在定义域上单调递减,则或C.当时,若,则D.若函数有2个零点,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则________.12.已知函数=___________13.已知空间中两个点A(1,3,1),B(5,7,5),则|AB|=_____14.已知幂函数f(x)=xa的图象经过点(8,2),则f(27)的值为____________15.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=2,∠B'A'C'=90°,则原△ABC的面积为______16.两平行线与的距离是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简(2)若是第三象限角,且,求的值18.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?19.某兴趣小组要测量钟楼的高度(单位:).如示意图,垂直放置的标杆的高度为,仰角.(1)该小组已测得一组的值,算出了,请据此算出的值(精确到);(2)该小组分析测得的数据后,认为适当调整标杆到钟楼的距离(单位:),使与之差较大,可以提高测量精度.若钟楼的实际高度为,试问为多少时,最大?20.计算下列各式的值(1);(2)已知,求21.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=a,(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用函数奇偶性的定义可判断A、B、C选项中各函数的奇偶性,利用特殊值法可判断D选项中函数的奇偶性.【详解】对于A选项,令,该函数的定义域为,,所以,函数为奇函数;对于B选项,令,该函数的定义域为,,所以,函数为偶函数;对于C选项,函数的定义域为,则函数为非奇非偶函数;对于D选项,令,则,,且,所以,函数为非奇非偶函数.故选:B.【点睛】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.2、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.3、D【解析】∵,∴∵∴∴故选D4、B【解析】根据一元二次不等式的解集,利用根与系致的关系求出的值

,再计的值.【详解】由不等式的解集是,所以是方程的两个实数根.则,所以所以故选:B5、B【解析】根据碳14的半衰期为5730年,即每5730年含量减少一半,设原来的量为,经过年后变成了,即可列出等式求出的值,即可求解.【详解】解:根据题意可设原来的量为,经过年后变成了,即,两边同时取对数,得:,即,,,以此推断此水坝建成的年代大概是公元前年.故选:B.6、B【解析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力7、C【解析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可【详解】若函数在上单调递减,则,解得.故选C.【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值8、A【解析】点,由中点坐标公式得中得为:,即.故选A.9、A【解析】由幂函数的定义解出a,再把点代入解出b.【详解】∵函数是幂函数,∴,即,∴点(4,2)在幂函数的图象上,∴,故故选:A.10、D【解析】A利用奇偶性定义判断;B根据函数的单调性,列出分段函数在分段区间的界点上函数值的不等关系求参数范围即可;C利用函数单调性求解集;D将问题转化为与直线的交点个数求参数a的范围.【详解】由题设,当时有,则;当时有,则,故是奇函数,A正确因为在定义域上单调递减,所以,得a≤-4或a≥-1,B正确当a≥-1时,在定义域上单调递减,由,得:x>-1且x≠0,C正确的零点个数即为与直线的交点个数,由题意得,解得-3<a<-5+172,D错误故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意,将分段函数分类讨论计算可得答案【详解】解:当时,,即,解得,满足题意;当时,,即,解得,不满足题意故.故答案为.【点睛】本题考查分段函数的计算,属于基础题12、2【解析】,所以点睛:本题考查函数对称性的应用.由题目问题可以猜想为定值,所以只需代入计算,得.函数对称性的问题要大胆猜想,小心求证13、【解析】直接代入空间中两点间的距离公式即可得解.【详解】∵空间中两个点A(1,3,1),B(5,7,5),∴|AB|4故答案为:4【点睛】本题考查空间中两点间的距离公式,属于基础题.14、3【解析】根据幂函数f(x)=xa的图象经过点(8,2)求出a的值,再求f(27)的值.【详解】幂函数f(x)=xa的图象经过点(8,2),则8α=2,∴α=,∴f(x)=,∴f(27)==3.故答案为3【点睛】本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.15、8【解析】根据“斜二测画法”原理还原出△ABC,利用边长对应关系计算原△ABC的面积即可详解】根据“斜二测画法”原理,还原出△ABC,如图所示;由B′O′=C′O′=2,∠B'A'C'=90°,∴O′A′B′C′=2,∴原△ABC的面积为SBC×OA4×4=8故答案为8【点睛】本题考查了斜二测画法中原图和直观图面积的计算问题,是基础题16、【解析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)根据诱导公式化简即得,(2)先根据诱导公式得,再根据平方关系求,即得的值.详解:(1).(2)由,得:∵是第三象限角,∴则点睛:本题考查诱导公式以及同角三角函数关系,考查基本求解能力.18、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由题意可知上述方程的解是,代入上述方程得答:政府应该对每件商品征7.5元.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者)19、(1)约为(2)为时,最大【解析】(1)运用正切三角函数建立等式,再结合题中数据可求解;(2)由,得到,再运用基本不等式求解.【小问1详解】由得,同理,.因为,所以,解得.因此,算出钟楼的高度约为.【小问2详解】由题设知,得,又,当且仅当时,取等号,故当时,最大.因为,则,所以当时,最大,故所求的是.20、(1)(2)1【解析】(1)根据对数和指数幂的运算性质计算即可得出答案.(2)利用诱导公式化简目标式,然后分子分母同时除以,代入即可得出答案.【小问1详解】原式=;【小问2详解】原式=.21、(1)见解析(2)见解析(3)【解析】(1)证明:∵PD=a,DC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论