2026届西藏林芝地区一中高一数学第一学期期末统考模拟试题含解析_第1页
2026届西藏林芝地区一中高一数学第一学期期末统考模拟试题含解析_第2页
2026届西藏林芝地区一中高一数学第一学期期末统考模拟试题含解析_第3页
2026届西藏林芝地区一中高一数学第一学期期末统考模拟试题含解析_第4页
2026届西藏林芝地区一中高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届西藏林芝地区一中高一数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似表示这些数据的规律,其中最合适的是()x1.992345.156.126y1.514.047.5112.0318.01A. B.C. D.2.已知命题,,则为()A., B.,C., D.,3.已知,则的大小关系是()A. B.C. D.4.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是()A. B.C. D.5.已知函数的部分图象如图所示,下列结论正确的个数是()①②将的图象向右平移1个单位,得到函数的图象③的图象关于直线对称④若,则A.0个 B.1个C.2个 D.3个6.若,,,则()A. B.C. D.7.如图是一算法的程序框图,若输出结果为,则在判断框中应填入的条件是()A. B.C. D.8.若函数在区间上单调递减,则实数满足的条件是A. B.C. D.9.若,,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角10.地震以里氏震级来度量地震的强度,若设为地震时所散发出来的相对能量,则里氏震级可定义为.在2021年3月下旬,地区发生里氏级地震,地区发生里氏7.3级地震,则地区地震所散发出来的相对能量是地区地震所散发出来的相对能量的()倍.A.7 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若角的终边与角的终边相同,则在内与角的终边相同的角是______12.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.13.已知函数.则函数的最大值和最小值之积为______14.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马,底面,,,,则此阳马的外接球的表面积为______.15.函数的图象的对称中心的坐标为___________.16.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)若的定义域为,求实数的取值范围;(2)若,函数为奇函数,且对任意,存在,使得,求实数的取值范围.18.已知二次函数满足:,且该函数的最小值为1.(1)求此二次函数的解析式;(2)若函数的定义域为(其中),问是否存在这样的两个实数m,n,使得函数的值域也为A?若存在,求出m,n的值;若不存在,请说明理由.19.已知函数(1)求当f(x)取得最大值时,x的取值集合;(2)完成下列表格并在给定的坐标系中,画出函数f(x)在上的图象.xy20.已知为第四象限角,且,求下列各式的值(1);(2)21.已知函数.(1)求的最小正周期;(2)求函数的单调增区间;(3)求函数在区间上值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,逐一判断,选择与实际数据接近的函数得选项.【详解】解:由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,对于A,函数是线性增加的函数,与表中的数据增加趋势不符合,故A不正确;对于C,函数,当,与表中数据7.5的误差很大,不符合要求,故C不正确;对于D,函数,当,与表中数据4.04的误差很大,不符合要求,故D不正确;对于B,当,与表中数据1.51接近,当,与表中数据4.04接近,当,与表中数据7.51接近,所以,B选项的函数是最接近实际的一个函数,故选:B2、A【解析】特称命题的否定为全称命题,所以,存在性量词改为全称量词,结论直接改否定即可.【详解】命题,,则:,答案选A【点睛】本题考查命题的否定,属于简单题.3、B【解析】利用指数函数和对数函数的性质,三角函数的性质比较大小即可【详解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴综上可知故选:B4、C【解析】根据三角函数的奇偶性,即可得出φ的值【详解】函数f(x)=sin(2x+φ)为R上的偶函数,则φ=+kπ,k∈Z;所以φ的值可以是.故选C.【点睛】本题考查了三角函数的图象与性质的应用问题,属于基础题5、C【解析】由函数的图象的顶点坐标求出A,由周期求出,可判断①,由点的坐标代入求得,可得函数的解析式,再根据函数图象的变换规律可判断②,将代入解析式中验证,可判断③;根据三角函数的图象和性质可判断④,即可得到答案【详解】由函数图象可知:,函数的最小正周期为,故,将代入解析式中:,得:由于,故,故①错误;由以上分析可知,将的图象向右平移1个单位,得到函数的图象,故②正确;将代入得,故③错误;由于函数的最小正周期为8,而,故不会出现一个取到最大或最小值另一个取到最小或最大的情况,故,故④正确,故选:C6、A【解析】先变形,然后利用指数函数的性质比较大小即可【详解】,因为在上为减函数,且,所以,所以,故选:A7、B【解析】依次执行循坏结构,验证输出结果即可.【详解】根据程序框图,运行结构如下:第一次循环,,第二次循环,,第三次循环,,此时退出循环,故应填:.故选:B.8、A【解析】因为函数在区间上单调递减,所以时,恒成立,即,故选A.9、B【解析】根据,可判断可能在的象限,根据,可判断可能在的象限,综合分析,即可得答案.【详解】由,可得的终边在第一象限或第二象限或与y轴正半轴重合,由,可得的终边在第二象限或第四象限,因为,同时成立,所以是第二象限角.故选:B10、C【解析】把两个震级代入后,两式作差即可解决此题【详解】设里氏3.1级地震所散发出来的能量为,里氏7.3级地震所散发出来的能量为,则①,②②①得:,解得:故选:二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【详解】∵(),∴()依题意,得(),解得(),∴,∴在内与角的终边相同的角为故答案为【点睛】本题考查了终边相同的角的表示,属于基础题.12、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:13、80【解析】根据二次函数的性质直接计算可得.【详解】因为,所以当时,,当时,,所以最大值和最小值之积为.故答案为:8014、【解析】将该几何体放入长方体中,即可求得外接球的半径,再由球的表面积公式即可得解.【详解】将该几何体放入长方体中,如图,易知该长方体的长、宽、高分别为、、,所以该几何体的外接球半径,所以该球的表面积.故答案为:.15、【解析】利用正切函数的对称中心求解即可.【详解】令=(),得(),∴对称中心的坐标为故答案:()16、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由函数的定义域为,得到恒成立,即恒成立,分类讨论,即可求解.(2)根据题意,转化为,利用单调性的定义,得到在R上单调递增,求得,得出恒成立,得出恒成立,分类讨论,即可求解.【详解】(1)由函数定义域为,即恒成立,即恒成立,当时,恒成立,因为,所以,即;当时,显然成立;当时,恒成立,因为,所以,综上可得,实数的取值范围.(2)由对任意,存在,使得,可得,设,因为,所以,同理可得,所以,所以,可得,即,所以在R上单调递增,所以,则,即恒成立,因为,所以恒成立,当时,恒成立,因为,当且仅当时等号成立,所以,所以,解得,所以;当时,显然成立;当时,恒成立,没有最大值,不合题意,综上,实数的取值范围.【点睛】利用函数求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.18、(1);(2)存在,,.【解析】(1)设,由,求出值,可得二次函数的解析式;(2)分①当时,②当时,③当时,三种情况讨论,可得存在满足条件的,,其中,【详解】解:(1)依题意,可设,因,代入得,所以.(2)假设存在这样m,n,分类讨论如下:当时,依题意,即两式相减,整理得,代入进一步得,产生矛盾,故舍去;当时,依题意,若,,解得或(舍去);若,,产生矛盾,故舍去;当时,依题意,即解得,产生矛盾,故舍去综上:存在满足条件的m,n,其中,19、(1);(2)图象见解析.【解析】(1)利用整体法求解三角函数最大值时x的取值集合;(2)填写表格,并作图.【小问1详解】由,得故当f(x)取得最大值时,x的取值集合为【小问2详解】函数f(x)在上的图象如下:x0y0220、(1)(2)【解析】(1)先根据同角三角函数的关系求解可得,再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论