版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届常德市重点中学高二数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A. B.C. D.2.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.3.在四面体OABC中,,,,则与AC所成角的大小为()A.30° B.60°C.120° D.150°4.圆与圆的位置关系是()A.外离 B.外切C.相交 D.内切5.圆心,半径为的圆的方程是()A. B.C. D.6.已知点到直线:的距离为1,则等于()A. B.C. D.7.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题8.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是A. B.C. D.9.已知直线和直线互相垂直,则等于()A.2 B.C.0 D.10.如图甲是第七届国际数学家大会(简称ICME—7)的会徽图案,其主体图案是由图乙的一连串直角三角形演化而成的.已知,,,,为直角顶点,设这些直角三角形的周长从小到大组成的数列为,令,为数列的前项和,则()A.8 B.9C.10 D.1111.若抛物线上一点到焦点的距离为5,则点的坐标为()A. B.C. D.12.数列是公差不为零的等差数列,为其前n项和.若对任意的,都有,则的值不可能是()A. B.2C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.经过两点的双曲线的标准方程是________14.方程()所表示的直线恒过定点________15.以点为圆心,为半径的圆的标准方程是_____________.16.若将抛掷一枚硬币所出现的结果“正面(朝上)”与“反面(朝上)”,分别记为H、T,相应的抛掷两枚硬币的样本空间为,则与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间的子集为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设斜率为k的直线与椭圆C交于两点,O为坐标原点,若的面积为定值,判断是否为定值,如果是,求出该定值;如果不是,说明理由.18.(12分)某公司举办捐步公益活动,参与者通过捐赠每天运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,还为公司获得了相应的广告效益,据测算,首日参与活动人数为5000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为20万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元)(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?19.(12分)已知满足,.(1)求证:是等差数列,求的通项公式;(2)若,的前项和是,求证:.20.(12分)已知二次函数,.(1)若,求函数的最小值;(2)若,解关于x的不等式.21.(12分)如图所示,第九届亚洲机器人锦标赛VEX中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD(包含边界和内部,A为坐标原点),AD长为10米,在AB边上距离A点4米的F处放置一只电子狗,在距离A点2米的E处放置一个机器人,机器人行走速度为v,电子狗行走速度为,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M,那么电子狗将被机器人捕获,点M叫成功点.(1)求在这个矩形场地内成功点M的轨迹方程;(2)P为矩形场地AD边上的一动点,若存在两个成功点到直线FP的距离为,且直线FP与点M的轨迹没有公共点,求P点横坐标的取值范围.22.(10分)已知为直角梯形,,平面,,.(1)求证:平面;(2)求平面与平面所成锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用分布计数原理求出所有的基本事件个数,在求出点落在直线x+y=4上包含的基本事件个数,利用古典概型的概率个数求出.解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是3:36=1:12,故选D考点:古典概型点评:本题考查先判断出各个结果是等可能事件,再利用古典概型的概率公式求概率,属于基础题2、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.3、B【解析】以为空间的一个基底,求出空间向量求的夹角即可判断作答.【详解】在四面体OABC中,不共面,则,令,依题意,,设与AC所成角的大小为,则,而,解得,所以与AC所成角的大小为.故选:B4、C【解析】利用圆心距与半径的关系确定正确选项.【详解】圆的圆心为,半径为,圆的圆心为,半径为,圆心距为,,所以两圆相交.故选:C5、D【解析】根据圆心坐标及半径,即可得到圆的方程.【详解】因为圆心为,半径为,所以圆的方程为:.故选:D.6、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.7、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A8、D【解析】由于BF⊥x轴,故,设,由得,选D.考点:椭圆的简单性质9、D【解析】利用直线垂直系数之间的关系即可得出.【详解】解:直线和直线互相垂直,则,解得:.故选:D.10、B【解析】由题意可得的边长,进而可得周长及,进而可得,可得解.【详解】由,可得,,,,所以,,所以前项和,所以,故选:B.11、C【解析】设,由抛物线的方程可得准线方程为,由抛物线的性质到焦点的距离等于到准线的距离,求出,解出纵坐标,进而求出【详解】由题意可得,解得,代入抛物线的方程,解得,所以的坐标,故选:C.12、A【解析】由已知建立不等式组,可求得,再对各选项逐一验证可得选项.【详解】解:因为数列是公差不为零的等差数列,为其前n项和.对任意的,都有,所以,即,解得,则当时,,不成立;当时,,成立;当时,,成立;当时,,成立;所以的值不可能是,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设双曲线的标准方程将点坐标代入求参数,即可确定标准方程.【详解】令,则,可得,令,则,无解.故双曲线的标准方程是.故答案为:.14、【解析】将方程化为,令得系数等于0,即可得到答案.【详解】方程可化为,由,得,所以方程()所表示的直线恒过定点.故答案为:.【点睛】本题考查了直线恒过定点问题,属于基础题.15、【解析】直接根据已知写出圆的标准方程得解.【详解】解:由题得圆的标准方程为.故答案为:16、,,,【解析】先写出与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间,再写出其全部子集即可.【详解】与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间为,此空间的子集为,,,故答案为:,,,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)是定值,定值为6【解析】(1)根据题意条件,可直接求出的值,然后再利用条件中、的关系,借助即可求解出、的值,从而得到椭圆方程;(2)根据已知条件设出、所在直线方程,然后与椭圆联立方程,分别表示出根与系数的关系,再表示出弦长关系,再计算点到直线的距离,把面积用和的式子表示出来,通过给出的面积的值,找到和的等量关系,将等量关系带入到利用跟与系数关系组合成的中即可得到答案.【小问1详解】由题意:,由知:,故椭圆C的标准方程为,【小问2详解】设:,①椭圆.②联立①②得:,,即∴,O到直线l的距离,∴,∴,即,∴.故为定值6.18、(1)8745,1686元(2)37天【解析】(1)根据等比数列的性质求出结果;(2)对活动天数进行讨论,列出不等式求出的范围即可.【小问1详解】设第天的捐步人数为,则且,∴第5天的捐步人数为由题意可知前5天的捐步人数成等比数列,其中首项为5000,公比为1.15,∴前5天的捐步总收益为元.【小问2详解】设活动第天后公司捐步总收益可以回收并有盈余,若,则,解得(舍)若,则,解得∴活动开始后第37天公司的捐步总收益可以收回启动资金并有盈余.19、(1)证明见解析,(2)证明见解析【解析】(1)在等式两边同时除以,结合等差数列的定义可证得数列为等差数列,确定该数列的首项和公差,可求得的表达式;(2)求得,利用裂项相消法求得,即可证得原不等式成立.【小问1详解】解:在等式两边同时除以可得且,所以,数列是以为首项,以为公差的等差数列,则,因此,.【小问2详解】证明:,所以,.故原不等式得证.20、(1)(2)当时,不等式的解集为当时,不等式的解集为当时,不等式的解集为【解析】(1)带入,将化解为,再利用基本不等式求最值即可;(2)将不等式移项整理为,再对a分类讨论,比较两根的大小,即可求得解集.【小问1详解】当a=3时,函数可整理为,因为,所以利用基本不等式,当且仅当,即时,y取到最小值.所以,当时,函数的最小值为.【小问2详解】将不等式整理为,令,即,解得两根为与1,因为,当时,即时,此时的解集为;当时,即时,此时的解集为;当时,即时,此时的解集为.综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.21、(1)(2)【解析】(1)分别以为轴,建立平面直角坐标系,由题意,利用两点间的距离公式可得答案.(2)由题意可得点的轨迹所在圆的圆心到直线的距离,点的轨迹与轴的交点到直线的距离,从而可得答案.【小问1详解】分别以为轴,建立平面直角坐标系,则,设成功点,可得即,化简得因为点需在矩形场地内,所以故所求轨迹方程为【小问2详解】设,直线方程为直线FP与点M轨迹没有公共点,则圆心到直线的距离大于依题意,动点需满足两个条件:点的轨迹所在圆的圆心到直线的距离即,解得②点的轨迹与轴的交点到直线的距离即,解得综上所述,P点横坐标的取值范围是22、(1)证明见解析;(2).【解析】建立空间直角坐标系.(1)方法一,利用向量的方法,通过计算,,证得,,由此证得平面.方法二,利用几何法,通过平面证得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GBT 35430-2017 信息与文献 期刊描述型元数据元素集》专题研究报告
- 《GB-T 41678.1-2022农业机械和拖拉机 高压电气电子元件和系统的安全性 第1部分:通 用要求》专题研究报告
- 《GB-T 28030-2011接地导通电阻测试仪》专题研究报告
- 《GBT 33756-2017 基于项目的温室气体减排量评估技术规范 生产水泥熟料的原料替代项目》专题研究报告
- 养老社区床位预定金担保协议
- 智能农业设备运维员岗位招聘考试试卷及答案
- 2026年内二科护理工作计划
- 2025年白喉、百日咳、破伤风、乙肝四联制剂合作协议书
- 2025年平板型太阳热水器项目建议书
- 儿童睡眠障碍的行为矫正方法
- 纺织业账务知识培训课件
- 1688采购合同范本
- 购买铁精粉居间合同范本
- GB/T 29730-2025冷热水用分集水器
- 污水厂安全知识培训
- (2025年标准)存单转让协议书
- 医学科研诚信专项培训
- 电力通信培训课件
- 第五版FMEA控制程序文件编制
- 药物致癌性试验必要性指导原则
- 软骨肉瘤护理查房
评论
0/150
提交评论