版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省滁州市定远育才学校2026届高一上数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值为A. B.C. D.2.已知四面体ABCD中,E,F分别是AC,BD的中点,若AB=6,CD=8,EF=5,则AB与CD所成角的度数为A.30° B.45°C.60° D.90°3.已知幂函数在上单调递减,则m的值为()A.0 B.1C.0或1 D.4.若一个三角形采用斜二测画法作直观图,则其直观图的面积是原来三角形面积的()倍.A B.C. D.25.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:),可得这个几何体的体积(单位:cm3)是A.4 B.5C.6 D.76.函数的图象可能是()A. B.C. D.7.=(
)A. B.C. D.8.若集合中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形9.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切10.直线的倾斜角为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,写出一个满足条件的的值:______.12.已知函数且关于的方程有四个不等实根,写出一个满足条件的值________13.若函数f(x)=的定义域为R,则实数a的取值范围是:_____________.14.新冠疫情防控常态化,核酸检测应检尽检!核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时检测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量与扩增次数n满足:,其中p为扩增效率,为DNA的初始数量.已知某被测标本DNA扩增8次后,数量变为原来的100倍,那么该标本的扩增效率p约为___________;该被测标本DNA扩增13次后,数量变为原来的___________倍.(参考数据:,,,,)15.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是_____16.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的圆心在直线上,半径为,且圆经过点和点①求圆的方程②过点的直线截图所得弦长为,求直线的方程18.已知tan(1)求tana(2)求sin2a19.设函数(1)求函数的值域;(2)设函数,若对,求正实数a的取值范围20.已知集合A=x13≤log(1)求A,B;(2)求∁U(3)如果C=xx<a,且A∩C≠∅,求a21.为何值时,直线与:(1)平行(2)垂直
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】方法一:当且时,由,得,令,则是周期为的函数,所以,当时,由得,,又是偶函数,所以,所以,所以,所以.选A方法二:当时,由得,,即,同理,所以又当时,由,得,因为是偶函数,所以,所以.选A点睛:解决抽象函数问题的两个注意点:(1)对于抽象函数的求函数值的问题,可选择定义域内的恰当的值求解,即要善于用取特殊值的方法求解函数值(2)由于抽象函数的解析式未知,故在解题时要合理运用条件中所给出的性质解题,有时在解题需要作出相应的变形2、D【解析】取BC的中点P,连接PE,PF,则∠FPE(或补角)是AB与CD所成的角,利用勾股定理可求该角为直角.【详解】如图,取BC的中点P,连接PE,PF,则PF//CD,∠FPE(或补角)是AB与CD所成的角,∵AB=6,CD=8,∴PF=4,PE=3,而EF=5,所以PF2+P故选:D.【点睛】本题考查异面直线所成的角,此类问题一般需要通过平移构建平面角,再利用解三角形的方法求解.3、A【解析】根据幂函数得的定义,求得或,结合幂函数的性质,即可求解.【详解】由题意,幂函数,可得,解得或,当时,可得,可得在上单调递减,符合题意;当时,可得,可得在上无单调性,不符合题意,综上可得,实数的值为.故选:A.4、A【解析】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的,故直观图中三角形面积是原三角形面积的.故选:A.【点睛】本题考查平面图形的直观图,由斜二测画法看三角形底边长和高的变化即可,属于基础题.5、A【解析】如图三视图复原的几何体是底面为直角梯形,是直角梯形,,一条侧棱垂直直角梯形的直角顶点的四棱锥,即平面所以几何体的体积为:故选A【点睛】本题考查几何体的三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键6、C【解析】令,可判断出g(x)的图象就是将h(x)的图象向上平移一个单位,由图像的对称性即可得到答案.【详解】令则,即g(x)的图象就是将h(x)的图象向上平移一个单位即可.因为h(-x)=f(-x)-f(x)=-h(x),即函数h(x)为奇函数,图象关于原点对称,所以的图象关于(0,1)对称.故选:C7、A【解析】由题意可得:.本题选择A选项8、D【解析】根据集合元素的互异性即可判断.【详解】由题可知,集合中的元素是的三边长,则,所以一定不是等腰三角形故选:D9、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.10、B【解析】设直线x﹣y+3=0的倾斜角为θ由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°故选B二、填空题:本大题共6小题,每小题5分,共30分。11、0(答案不唯一)【解析】利用特殊角的三角函数值求解的值.【详解】因为,所以,,则,或,,同时满足即可.故答案为:012、(在之间都可以).【解析】画出函数的图象,结合图象可得答案.【详解】如图,当时,,当且仅当时等号成立,当时,,要使方程有四个不等实根,只需使即可,故答案为:(在之间都可以).13、【解析】根据题意,有在R上恒成立,则,即可得解.【详解】若函数f(x)=的定义域为R,则在R上恒成立,则,解得:,故答案为:.14、①.0.778②.1788【解析】①对数运算,由某被测标本DNA扩增8次后,数量变为原来的100倍,可以求出p;②由n=13,可以求数量是原来的多少倍.【详解】故答案为:①0.778;②1778.15、①③【解析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可【详解】对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题16、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、①.②.或【解析】①.由题意设出圆心坐标,结合圆经过的点得到方程组,求解方程组计算可得圆的方程为②.分类讨论直线的斜率存在和斜率不存在两种情况可得直线的方程为或试题解析:①由题意可知,设圆心为则圆为:,∵圆过点和点,∴,则即圆的方程为②设直线的方程为即,∵过点的直线截图所得弦长为,∴,则当直线的斜率不存在时,直线为,此时弦长为符合题意,即直线的方程为或18、(1)3;(2)35【解析】(1)根据正切的差角公式即可直接求出答案;(2)利用齐次式即可直接求出答案.【小问1详解】因为tana-π4=1解得tanα=3【小问2详解】sin=19、(1)函数的值域为.(2)【解析】(1)由已知,利用基本不等式可求函数的值域;(2)由对可得函数函数在上的值域包含与函数在上的值域,由此可求正实数a的取值范围【小问1详解】,,则,当且仅当时取“=”,所以,即函数的值域为.【小问2详解】设,因为所以,函数在上单调递增,则函数在上单调递增,,设时,函数的值域为A.由题意知.函数图象的对称轴为,当,即时,函数在上递增,则,解得,当时,即时,函数在上的最大值为,中的较大者,而且,不合题意,当,即时,函数在上递减,则,满足条件的不存在,综上,20、(1)A=2,8,(2)∁(3)2,+∞【解析】(1)根据函数y=log8x和函数y=(2)先求出集合A与集合B的交集,再求补集即可(3)根据集合∁和集合A的交集为空集,可直接求出a的取值范围【小问1详解】根据题意,可得:log8813≤log故有:A=函数y=2x在区间-∞,+∞综上,答案为:A=2,8,【小问2详解】由(1)可知:A=2,8,则有:A∩B=故有:∁故答案为:-∞,2【小问3详解】由于A=x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理意识评估的老年护理应用
- 妇科护理中的健康教育
- 第二章第三节河流第3课时
- 基于物联网的喷泉智能控制架构
- 2026 年中职康复治疗技术类(康复工程)试题及答案
- 2026 年中职金属压力加工(金属加工基础)试题及答案
- 高速铁路旅客服务心理学电子教案 第二章 高速铁路旅客服务与心理学
- 基于2024年中国流感监测周报数据的流感暴发疫情流行特征分析
- 2024年中考道德与法治(陕西)第二次模拟考试(含答案)
- 2025年海南省公需课学习-中国居民膳食指南科学解读1615
- 挂名监事免责协议书模板
- 2025房屋买卖合同范本(下载)
- 分布式光伏电站运维管理与考核体系
- 【MOOC期末】《模拟电子技术基础》(华中科技大学)期末考试慕课答案
- 脑炎的护理课件
- 胎头吸引技术课件
- 电池PACK箱体项目可行性研究报告(备案审核模板)
- 贵州省2023年7月普通高中学业水平合格性考试地理试卷(含答案)
- 实施“十五五”规划的发展思路
- 资金无偿赠予协议书
- 课件王思斌:社会工作概论
评论
0/150
提交评论