版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市第五十六中学数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.2.已知矩形,为平面外一点,且平面,,分别为,上的点,且,,,则()A. B.C.1 D.3.下列命题中,正确的是()A.若a>b,c>d,则ac>bd B.若ac>bc,则a<bC.若a>b,c>d,则a﹣c>b﹣d D.若,则a<b4.直线分别交坐标轴于A,B两点,O为坐标原点,三角形OAB的内切圆上有动点P,则的最小值为()A.16 B.18C.20 D.225.在四棱锥中,分别为的中点,则()A. B.C. D.6.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.147.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.128.南宋数学家杨辉在《详解九章算法》中讨论过高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.例如“百层球堆垛”:第一层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,第五层有15个球,…,各层球数之差:,,,,…即2,3,4,5,…是等差数列.现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,则该数列的第8项为()A.51 B.68C.106 D.1579.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.10.设等比数列的前项和为,且,则()A. B.C. D.11.已知在平面直角坐标系中,圆的方程为,直线过点且与直线垂直.若直线与圆交于两点,则的面积为A.1 B.C.2 D.12.命题“,”否定是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.等比数列的前项和为,则的值为_____14.命题为假命题,则实数的取值范围为_____________.15.已知数列的前n项和为,则取得最大值时n的值为__________________16.过椭圆的右焦点作两条相互垂直的直线m,n,直线m与椭圆交于A,B两点,直线n与椭圆交于C,D两点,若.则下列方程①;②;③;④.其中可以作为直线AB的方程的是______(写出所有正确答案的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,其中为自然对数的底数.(1)若为的极值点,求的单调区间和最大值;(2)是否存在实数,使得的最大值是?若存在,求出的值;若不存在,说明理由.18.(12分)在平面直角坐标系中,已知点,,点满足,记点的轨迹为.(1)求的方程;(2)已知,是经过圆上一点且与相切的两条直线,斜率分别为,,直线的斜率为,求证:为定值.19.(12分)已知数列的前n项和为满足(1)求证:是等比数列,并求数列通项公式;(2)若,数列的前项和为.求证:20.(12分)已知椭圆M:的离心率为,左顶点A到左焦点F的距离为1,椭圆M上一点B位于第一象限,点B与点C关于原点对称,直线CF与椭圆M的另一交点为D(1)求椭圆M的标准方程;(2)设直线AD的斜率为,直线AB的斜率为.求证:为定值21.(12分)已知抛物线的焦点为F,点在抛物线上.(1)求抛物线的标准方程;(2)过点的直线交抛物钱C于A,B两点,O为坐标原点,记直线OA,OB的斜率分别,,求证:为定值.22.(10分)已知函数.(1)求的单调区间;(2)求函数在区间上的最大值与最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.2、B【解析】由,,得,然后利用向量的加减法法则把向量用向量表示出来,可求出的值,从而可得答案【详解】解:因为,,所以所以,因为,所以,所以,故选:B3、D【解析】运用不等式性质,结合特殊值法,对选项注逐一判断正误即可.【详解】选项A中,若,时,则成立,否则,若,则,显然错误,故选项A错误;选项B中,若,,则能推出,否则,若,则,显然错误,故选项B错误;选项C中,若,则,显然错误,故选项C错误;选项D中,若,显然,由不等式性质知不等式两边同乘以一个正数,不等式不变号,即.故选:D4、B【解析】由题意,求出内切圆的半径和圆心坐标,设,则,由表示内切圆上的动点P到定点的距离的平方,从而即可求解最小值.【详解】解:因为直线分别交坐标轴于A,B两点,所以设,则,因为,所以三角形OAB的内切圆半径,内切圆圆心为,所以内切圆的方程为,设,则,因为表示内切圆上的动点P到定点的距离的平方,且在内切圆内,所以,所以,,即的最小值为18,故选:B.5、A【解析】结合空间几何体以及空间向量的线性运算即可求出结果.【详解】因为分别为的中点,则,,,故选:A.6、A【解析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【详解】数列{an}是等差数列,,那么,所以.故选:A.【点睛】本题考查等差数列的性质和前项和,属于基础题型.7、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C8、C【解析】对高阶等差数列按其定义逐一进行构造数列,直到出现一般等差数列为止,再根据其递推关系进行求解.【详解】现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,各项与前一项之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差数列,所以,故选:C9、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B10、C【解析】根据给定条件求出等比数列公比q的关系,再利用前n项和公式计算得解.【详解】设等比数列的的公比为q,由得:,解得,所以.故选:C11、A【解析】∵圆的方程为,即,∴圆的圆心为,半径为2.∵直线过点且与直线垂直∴直线.∴圆心到直线的距离.∴直线被圆截得的弦长,又∵坐标原点到的距离为,∴的面积为.考点:1、直线与圆的位置关系;2、三角形的面积公式.12、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等比数列前项和公式的特点列方程,解方程求得的值.【详解】由于等比数列前项和,本题中,故.故填:.【点睛】本小题主要考查等比数列前项和公式的特点,考查观察与思考的能力,属于基础题.14、【解析】依据题意列出关于实数的不等式,即可求得实数的取值范围.【详解】命题为假命题,则为真命题则判别式,解之得故答案为:15、①.13②.##3.4【解析】由题可得利用函数的单调性可得取得最大值时n的值,然后利用,即求.【详解】∵,∴当时,单调递减且,当时,单调递减且,∴时,取得最大值,∴.故答案为:13;.16、①②【解析】①②结合椭圆方程得到与椭圆参数的关系,即可判断;③④联立直线与椭圆方程,利用弦长公式求,即可判断.【详解】由题设,且右焦点为,①时直线,故,则符合题设;②时,同①知:符合题设;③时直线,联立直线AB与椭圆方程并整理得:,则,同理可得,则,不合题设;④时,同③分析知:,不合题设;故答案为:①②.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调增区间是,单调减区间是;最大值为;(2)存在,.【解析】(1)利用为的极值点求得,进而可得函数的单调区间和最大值;(2)对导函数,分与进行讨论,得函数的单调性进而求得最值,再由最大值是求出的值.【详解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的单调增区间是,单调减区间是;的极大值为;也即的最大值为.(2)解:∵,∴,①当时,单调递增,得的最大值是,解得,舍去;②时,由,即,当,即时,∴时,;时,;∴的单调增区间是,单调减区间是,又在上的最大值为,∴,∴;当,即时,在单调递增,∴的最大值是,解得,舍去;综上:存在符合题意,此时.【点睛】本题主要考查了函数的导数在求解函数的单调性及求解函数的最值中的应用,还考查了函数的最值求解与分类讨论的应用,解题时要认真审题,注意挖掘题设中的条件.18、(1);(2)证明见解析.【解析】(1)根据双曲线的定义可得答案;(2)设,过点的的切线方程为,联立此直线与双曲线的方程消元,然后由可得,即可得到,然后可证明.【小问1详解】因为,所以点的轨迹是以为焦点的双曲线的右支,所以,,所以,所以的方程为【小问2详解】设,则,设过点的切线方程为,联立可得由可得,所以所以19、(1)证明见解析,(2)证明见解析【解析】(1)令可求得的值,令,由可得,两式作差可得,利用等比数列的定义可证得结论成立,确定该数列的首项和公比,可求得数列的通项公式;(2)求得,利用错位相减法可求得,结合数列的单调性可证得结论成立.【小问1详解】证明:当时,,解得,当时,由可得,上述两个等式作差得,所以,,则,因为,则,可得,,,以此类推,可知对任意的,,所以,,因此,数列是等比数列,且首项为,公比为,所以,,解得.【小问2详解】证明:,则,其中,所以,数列为单调递减数列,则,,,上式下式,得,所以,,因此,.20、(1)(2)证明见解析【解析】(1)根据椭圆离心率公式,结合椭圆的性质进行求解即可;(2)设出直线CF的方程与椭圆方程联立,根据斜率公式,结合一元二次方程根与系数关系进行求解即可.【小问1详解】(1),,∴,,,∴;【小问2详解】设,,则,CF:联立∴,∴【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.21、(1)(2)证明见解析【解析】(1)将点代入抛物线方程即可求解;(2)当直线AB的斜率存在时,设直线AB的方程为,,将直线方程与抛物线方程联立利用韦达定理即可求出的值;当直线AB的斜率不存在时,由过点即可求出点和点的坐标,即可求出的值.【小问1详解】将点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《初中历史故事阅读拓展教学教案》
- 农产品产销一体化运营协议
- 拆房承包合同范本
- 堡坎拆除合同范本
- 山西合作协议书
- 拳馆私教合同协议
- 接送孩子合同范本
- 教学师带徒协议书
- 料管采购合同范本
- 旅游退费合同范本
- 山东省济南市历下区2024-2025学年九年级上学期期中考试化学试题(含答案)
- JBT 9212-2010 无损检测 常压钢质储罐焊缝超声检测方法
- 《食品标准与法律法规》课件-第二章 我国食品标准体系
- 消毒隔离制度课件
- 成品综合支吊架深化设计及施工技术专项方案
- 改革开放简史智慧树知到课后章节答案2023年下北方工业大学
- 木薯变性淀粉生产应用课件
- 校门安全管理“十条”
- 超全QC管理流程图
- 临时工劳动合同简易版可打印
- 洁净室施工及验收规范标准
评论
0/150
提交评论