2026届黄冈市重点中学高一上数学期末达标检测模拟试题含解析_第1页
2026届黄冈市重点中学高一上数学期末达标检测模拟试题含解析_第2页
2026届黄冈市重点中学高一上数学期末达标检测模拟试题含解析_第3页
2026届黄冈市重点中学高一上数学期末达标检测模拟试题含解析_第4页
2026届黄冈市重点中学高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届黄冈市重点中学高一上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用样本估计总体,下列说法正确的是A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本的标准差可以近似地反映总体的平均状态D.数据的方差越大,说明数据越稳定2.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切3.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=04.如图,在中,已知为上一点,且满足,则实数的值为A. B.C. D.5.已知,,,则a,b,c的大小关系正确的是()A.a>b>c B.b>c>aC.c>b>a D.c>a>b6.已知命题“存在,使得等式成立”是假命题,则实数的取值范围是()A. B.C. D.7.在下列区间中,函数f(x)=ex+2x﹣5的零点所在的区间为()A.(﹣1,0) B.(0,1)C.(1,2) D.(2,3)8.黄金分割比例广泛存在于许多艺术作品中.在三角形中,底与腰之比为黄金分割比的三角形被称作黄金三角形,被认为是最美的三角形,它是两底角为72°的等腰三角形.达芬奇的名作《蒙娜丽莎》中,在整个画面里形成了一个黄金三角形.如图,在黄金三角形中,,根据这些信息,可得()A. B.C. D.9.设全集,集合,则等于A. B.C. D.10.将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是A.事件“甲分得1张白牌”与事件“乙分得1张红牌”B.事件“甲分得1张红牌”与事件“乙分得1张蓝牌”C.事件“甲分得1张白牌”与事件“乙分得2张白牌”D.事件“甲分得2张白牌”与事件“乙分得1张黑牌”二、填空题:本大题共6小题,每小题5分,共30分。11.在中,边上的中垂线分别交于点若,则_______12.已知幂函数的图象过点,则______13.____________14.直线与圆相交于A,B两点,则线段AB的长为__________15.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.16.幂函数的图像过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,函数(1)若,判断并证明函数的单调性;(2)若,函数在区间()上的取值范围是(),求的范围18.如图所示,已知长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD(1)求证:直线CM⊥面DFN;(2)求点C到平面FDM的距离19.已知函数(1)求函数的最小正周期和单调递增区间;(2)若在区间上存在唯一的最小值为-2,求实数m的取值范围20.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围21.某产品在出厂前需要经过质检,质检分为2个过程.第1个过程,将产品交给3位质检员分别进行检验,若3位质检员检验结果均为合格,则产品不需要进行第2个过程,可以出厂;若3位质检员检验结果均为不合格,则产品视为不合格产品,不可以出厂;若只有1位或2位质检员检验结果为合格,则需要进行第2个过程.第2个过程,将产品交给第4位和第5位质检员检验,若这2位质检员检验结果均为合格,则可以出厂,否则视为不合格产品,不可以出厂.设每位质检员检验结果为合格的概率均为,且每位质检员的检验结果相互独立(1)求产品需要进行第2个过程的概率;(2)求产品不可以出厂的概率

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】解:因为用样本估计总体时,样本容量越大,估计就越精确,成立选项A显然不成立,选项C中,样本的标准差可以近似地反映总体的稳定状态,、数据的方差越大,说明数据越不稳定,故选B2、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.3、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为4、B【解析】所以,所以。故选B。5、C【解析】根据对数函数的单调性和中间数可得正确的选项.【详解】因为,故即,而,故,即,而,故,故即,故,故选:C6、D【解析】由题意可得,由的范围可得的范围,再求其补集即可求解.【详解】由可得,因为,所以,若命题“存在,使得等式成立”是假命题,则实数的取值范围是,故选:D.7、C【解析】由零点存在性定理即可得出选项.【详解】由函数为连续函数,且,,所以,所以零点所在的区间为,故选:C【点睛】本题主要考查零点存在性定理,在运用零点存在性定理时,函数为连续函数,属于基础题.8、B【解析】由题意,结合二倍角余弦公式、平方关系求得,再根据诱导公式即可求.【详解】由题设,可得,,所以,又,所以.故选:B9、A【解析】,=10、C【解析】对于,事件“甲分得1张白牌”与事件“乙分得1张红牌”可以同时发生,不是互斥事件;对于事件“甲分得1张红牌”与事件“乙分得1张蓝牌”可能同时发生,不是互斥事件;对于,事件“甲分得2张白牌”与事件“乙分得1张黑牌”能同时发生,不是互斥事件;但中的两个事件不可能发生,是互斥事件,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】设,则,,又,即,故答案为.12、3【解析】先利用待定系数法代入点的坐标,求出幂函数的解析式,再求的值.【详解】设,由于图象过点,得,,,故答案为3.【点睛】本题考查幂函数的解析式,以及根据解析式求函数值,意在考查对基础知识的掌握与应用,属于基础题.13、【解析】,故答案为.考点:对数的运算.14、【解析】算出弦心距后可计算弦长【详解】圆的标准方程为:,圆心到直线的距离为,所以,填【点睛】圆中弦长问题,应利用垂径定理构建直角三角形,其中弦心距可利用点到直线的距离公式来计算15、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.16、【解析】先设,再由已知条件求出,即,然后求即可.【详解】解:由为幂函数,则可设,又函数的图像过点,则,则,即,则,故答案为:.【点睛】本题考查了幂函数的解析式的求法,重点考查了幂函数求值问题,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在上递增,证明见解析.(2)【解析】(1)根据函数单调性的定义计算的符号,从而判断出的单调性.(2)对进行分类讨论,结合一元二次方程根的分布来求得的范围.【小问1详解】,当时,的定义域为,在上递增,证明如下:任取,由于,所以,所以在上递增.【小问2详解】由于,所以,,由知,所以.由于,所以或.当时,由(1)可知在上递增.所以,从而①有两个不同的实数根,令,①可化为,其中,所以,,,解得.当时,函数的定义域为,函数在上递减.若,则,于是,这与矛盾,故舍去.所以,则,于是,两式相减并化简得,由于,所以,所以.综上所述,的取值范围是.【点睛】函数在区间上单调,则其值域和单调性有关,若在区间上递增,则值域为;若在区间上递减,则值域为.18、(1)见解析;(2)【解析】(1)推导出DN⊥CM,CM⊥FN,由此能证明CM⊥平面DFN.(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,利用向量法能求出点C到平面FDM的距离【详解】证明:(1)∵长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD因为长方形ABCD,DC=CN=2,所以四边形DCNM是正方形,∴DN⊥CM,因为平面MNFE⊥平面ABCD,FN⊥MN,MNFE∩平面ABCD=MN,所以FN⊥平面DCNM,因为CM平面DCNM,所以CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,则C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),设平面FDM的法向量=(x,y,z),则,取x=1,得=(1,0,-1),∴点C到平面FDM的距离d===【点睛】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题19、(1),(2)【解析】(1)用诱导公式将函数化为,然后可解;(2)根据m介于第一个最小值点和第二个最小值点之间可解.【小问1详解】所以的最小正周期,由,解得,所以的单调递增区间为.【小问2详解】令,得因为在区间上存在唯一的最小值为-2,所以,,即所以实数m的取值范围是.20、(1)0;(2)偶函数;(3)见解析【解析】(1)令,代入,即可求出结果;(2)先求出,再由,即可判断出结果;(3)先由,求出,将不等式化为,根据函数在上是增函数,分和两种情况讨论,即可得出结果.【详解】(1)因为对于任意,有,令,则,所以;(2)令,则,所以,令,则,所以函数为偶函数;(3)因为,所以,所以不等式可化为;又因为在上是增函数,而函数为偶函数,所以或;当时,或;当时,或;综上,当时,的取值范围为或;当时,的取值范围为或.【点睛】本题主要考查函数奇偶性与单调性的综合,以及抽象函数及其应用,常用赋值法求函数值,属于常考题型.21、(1)(2)【解析】(1)分在第1个过程中,1或2位质检员检验结果为合格两种情况讨论,根据相互独立事件及互斥事件的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论