山西省晋中市平遥县二中2026届高二数学第一学期期末检测模拟试题含解析_第1页
山西省晋中市平遥县二中2026届高二数学第一学期期末检测模拟试题含解析_第2页
山西省晋中市平遥县二中2026届高二数学第一学期期末检测模拟试题含解析_第3页
山西省晋中市平遥县二中2026届高二数学第一学期期末检测模拟试题含解析_第4页
山西省晋中市平遥县二中2026届高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省晋中市平遥县二中2026届高二数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.2.甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A. B.C. D.3.若直线与平行,则实数m等于()A.1 B.C.4 D.04.函数为的导函数,令,则下列关系正确的是()A. B.C. D.5.设是空间一定点,为空间内任一非零向量,满足条件的点构成的图形是()A.圆 B.直线C.平面 D.线段6.函数的图像大致是()A. B.C. D.7.已知集合,从集合A中任取一点P,则点P满足约束条件的概率为()A. B.C. D.8.过圆外一点引圆的两条切线,则经过两切点的直线方程是A. B.C. D.9.已知数列为等差数列,若,则()A.1 B.2C.3 D.410.有下列三个命题:①“若,则互为相反数”的逆命题;②“若,则”的逆否命题;③“若,则”的否命题.其中真命题的个数是A.0 B.1C.2 D.311.某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为()A.10 B.30C.40 D.4612.经过两点直线的倾斜角是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点P是抛物线上一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________14.双曲线的左焦点到直线的距离为________.15.在中,,,的外接圆半径为,则边c的长为_____.16.复数(其中i为虚数单位)的共轭复数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)令,求数列前n项和.18.(12分)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别是,,离心率,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C过点;②以点为圆心,3为半径的圆与以点为圆心,1为半径的圆相交,且交点在椭圆C上(只能从①②中选择一个作为已知)(1)求椭圆C的方程;(2)已知过点的直线l交椭圆C于M,N两点,点N关于x轴的对称点为,且,M,三点构成一个三角形,求证:直线过定点,并求面积的最大值.19.(12分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由20.(12分)三棱锥中,,,,直线与平面所成的角为,点在线段上.(1)求证:;(2)若点在上,满足,点满足,求实数使得二面角的余弦值为.21.(12分)已知数列的前项和为,且(1)求数列的通项公式;(2)若,求数列的前项和.22.(10分)已知函数.(1)讨论函数的单调性;(2)若恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C2、A【解析】先求出所有的基本事件,再求出甲、乙相邻,丙、丁不相邻的基本事件,根据古典概型的概率公式求解即可【详解】甲,乙、丙、丁、戊共5人随机地排成一行有种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有种方法,所以甲、乙相邻,丙、丁不相邻的概率为,故选:A3、B【解析】两直线平行的充要条件【详解】由于,则,.故选:B4、B【解析】求导后,令,可求得,再利用导数可得为减函数,比较的大小后,根据为减函数可得答案.【详解】由题意得,,,解得,所以所以,所以为减函数因为,所以,故选:B【点睛】关键点点睛:比较大小的关键是知道的单调性,利用导数可得的单调性.5、C【解析】根据法向量的定义可判断出点所构成的图形.【详解】是空间一定点,为空间内任一非零向量,满足条件,所以,构成的图形是经过点,且以为法向量的平面.故选:C.【点睛】本题考查空间中动点的轨迹,考查了法向量定义的理解,属于基础题.6、B【解析】由导数判断函数的单调性及指数的增长趋势即可判断.【详解】当时,,∴在上单调递增,当时,,∴在上单调递减,排除A、D;又由指数函数增长趋势,排除C.故选:B7、C【解析】根据圆的性质,结合两条直线的位置关系、几何概型计算公式进行求解即可.【详解】,圆心坐标为,半径为,直线互相垂直,且交点为,由圆的性质可知:点P满足约束条件的概率为,故选:C8、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选9、D【解析】利用等差数列下标和的性质求值即可.【详解】由等差数列下标和性质知:.故选:D10、B【解析】①写出命题的逆命题,可以进行判断为真命题;②原命题和逆否命题真假性相同,而通过举例得到原命题为假,故逆否命题也为假;③写出命题的否命题,通过举出反例得到否命题为假【详解】①“若,则互为相反数”的逆命题是,若互为相反数,则;是真命题;②“若,则”,当a=-1,b=-2,时不满足,故原命题为假命题,而原命题和逆否命题真假性相同,故得到命题为假;③“若,则”的否命题是若,则,举例当x=5时,不满足不等式,故得到否命题是假命题;故答案为B.【点睛】这个题目考查了命题真假的判断,涉及命题的否定,命题的否命题,逆否命题,逆命题的相关概念,注意原命题和逆否命题的真假性相同,故需要判断逆否命题的真假时,只需要判断原命题的真假11、C【解析】可分为女教师0人,男教师3人和女教师1人,男教师2人两种情况,用组合数表示计算即得解【详解】女教师最多为1人即女教师为0人或者1人若女教师为0人,则男教师有3人,有种选择;若女教师为1人,则男教师2人,有种选择;故女教师最多为1人的选法种数为种故选:C12、B【解析】求出直线的斜率后可得倾斜角【详解】经过两点的直线的斜率为,设该直线的倾斜角为,则,又,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.14、【解析】根据双曲线方程求得左焦点的坐标,利用点到直线的距离公式即可求得结果.【详解】因为双曲线的方程为,设其左焦点的坐标为,故可得,解得,故左焦点的坐标为,则其到直线的距离.故答案为:.15、【解析】由面积公式求得,结合外接圆半径,利用正弦定理得到边c的长.【详解】,从而,由正弦定理得:,解得:故答案为:16、##【解析】根据共轭复数的概念,即可得答案.【详解】由题意可知:复数(其中i为虚数单位)的共轭复数,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先通过等比数列的基本量运算求出公比,进而求出通项公式;(2)结合(1)求出,然后根据错位相减法求得答案.【小问1详解】设等比数列公比为q,,,,(负值舍去),所以.【小问2详解】,,所以,解得:.18、(1)(2)证明见解析,【解析】(1)若选①,则由题意可得,解方程组求出,从而可求得椭圆方程,若选②,,再结合离心率和求出,从而可求得椭圆方程,(2)由题意设直线MN的方程为,设,,,将直线方程代入椭圆方程中,消去,再利用根与系数的关系,表示出直线的方程,令,求出,结合前面的式子化简可得线过的定点,表示出的面积,利用基本不等式可求得其最大值【小问1详解】若选①:由题意知,∴.所以椭圆C的方程为.若选②:设圆与圆相交于点Q.由题意知:.又因为点Q在椭圆上,所以,∴.又因为,∴,∴.所以椭圆C的方程为.【小问2详解】由题易知直线MN斜率存在且不为0,因为,故设直线MN方程为,设,,,∴,∴,,因为点N关于x轴对称点为,所以,所以直线方程为,令,∴.又,∴.所以直线过定点,∴.当且仅当,即时,取等号.所以面积的最大值为.19、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线的定义进行求解即可;(2)设出直线l的方程与双曲线的方程联立,利用一元二次方程根与系数关系,结合平面向量数量积的坐标表示公式进行求解判断即可.【小问1详解】设圆E的圆心为,半径为r,则,,所以由双曲线定义可知,E的轨迹是以M,N为焦点、实轴长为6的双曲线的右支,所以动圆的圆心E的轨迹方程为,;【小问2详解】设,,直线l的方程为由得,且,故又,所以又,,所以,即.又故或若,则直线l的方程为,过点,与题意矛盾,所以,故,所以直线l的方程为,过点【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.20、(1)证明见解析;(2).【解析】(1)证明平面,利用线面垂直的性质可证得结论成立;(2)设,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可得出关于实数的等式,即可解得实数的值.【小问1详解】证明:因为,,则且,,平面,所以为直线与平面所成的线面角,即,,故,,,平面,平面,因此,.【小问2详解】解:设,由(1)可知且,,因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、,设平面的法向量为,,,则,取,可得,设平面的法向量为,,,由,取,则,由已知可得,解得.当点为线段的中点时,二面角的平面角为锐角,合乎题意.综上所述,.21、(1)(2)【解析】(1)根据,再结合等比数列的定义,即可求出结果;(2)由(1)可知,再利用错位相减法,即可求出结果.【小问1详解】解:因为,当时,,解得当时,,所以,即.所以数列是首项为2,公比为2的等比数列.故.【小问2详解】解:由(1)知,则,所以①②,①-②得.所以数列的前项和22、(1)当时,上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)【解析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论