版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市朝阳区数学高一上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在下列四个正方体中,、为正方体两个顶点,、、为所在棱的中点,则在这四个正方体中,直线与平面不平行的是()A. B.C. D.2.关于的不等式对任意恒成立,则实数的取值范围是()A. B.C. D.3.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为()A.y=2sin B.y=C.y=2sin D.y=2sin4.函数f(x)=的定义域为A.[1,3)∪(3,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)5.已知函数的值域为R,则实数的取值范围是()A. B.C. D.6.已知三个变量随变量变化数据如下表:则反映随变化情况拟合较好的一组函数模型是A. B.C. D.7.全集U={1,2,3,4,5,6},M={x|x≤4},则M等于()A.{1,3} B.{5,6}C.{1,5} D.{4,5}8.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在9.函数与的图象在上的交点有()A.个 B.个C.个 D.个10.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数关于对称,则常数的最大负值为________12.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.13.已知幂函数在区间上单调递减,则___________.14.扇形的半径为2,弧长为2,则该扇形的面积为______15.已知函数,则________.16.向量与,则向量在方向上的投影为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的值及的单调递增区间;(2)求在区间上的最大值和最小值,以及取最值时x的值18.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度之间的函数关系是(且),若牛奶放在0℃的冰箱中,保鲜时间是200小时,而在1℃的温度下则是160小时,而在2℃的温度下则是128小时.(1)写出保鲜时间关于储藏温度(℃)的函数解析式;(2)利用(1)的结论,若设置储藏温度为3℃的情况下,某人储藏一瓶牛奶的时间为90至100小时之间,则这瓶牛奶能否正常饮用?(说明理由)19.如图,四棱锥中,底面为矩形,面,为的中点(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离20.如图,在直四棱柱中,底面是边长为2的正方形,分别为线段,的中点.(1)求证:||平面;(2)四棱柱的外接球的表面积为,求异面直线与所成的角的大小.21.已知函数(1)求当f(x)取得最大值时,x的取值集合;(2)完成下列表格并在给定的坐标系中,画出函数f(x)在上的图象.xy
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用线面平行判定定理可判断A、B、C选项的正误;利用线面平行的性质定理可判断D选项的正误.【详解】对于A选项,如下图所示,连接,在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于B选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于C选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、中点,则,,平面,平面,平面;对于D选项,如下图所示,连接交于点,连接,连接交于点,若平面,平面,平面平面,则,则,由于四边形为正方形,对角线交于点,则为的中点,、分别为、的中点,则,且,则,,则,又,则,所以,与平面不平行;故选:D.【点睛】判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(,,),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(,).2、B【解析】当时可知;当时,采用分离变量法可得,结合基本不等式可求得;综合两种情况可得结果.【详解】当时,不等式为恒成立,;当时,不等式可化为:,,(当且仅当,即时取等号),;综上所述:实数的取值范围为.故选:B.3、C【解析】先从图象中看出A,再求出最小正周期,求出ω,代入特殊值后结合φ范围求出φ的值,得到答案.【详解】由图象可知A=2,因为-==,所以T=,ω=2.当x=-时,2sin=2,即sin=1,又|φ|<,解得φ=.故函数的解析式为y=2sin.故选:C4、D【解析】由根式内部的代数式大于等于0,分式的分母不为0两类不等式组求解【详解】要使原函数有意义,需满足,解得x≥1.∴函数f(x)=的定义域为[1,+∞)故选D.【点睛】本题考查函数的定义域及其求法,解题的关键是是根式内部的代数式大于等于0,分式的分母不为05、C【解析】分段函数值域为R,在x=1左侧值域和右侧值域并集为R.【详解】当,∴当时,,∵的值域为R,∴当时,值域需包含,∴,解得,故选:C.6、B【解析】根据幂函数、指数函数、对数函数增长速度的不同可得结果.【详解】从题表格可以看出,三个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,呈指数函数变化,变量的增长速度最慢,对数型函数变化,故选B【点睛】本题主要考查幂函数、指数函数、对数函数模型的应用,意在考查综合利用所学知识解决问题的能力,属于简单题.7、B【解析】M即集合U中满足大于4的元素组成的集合.【详解】由全集U={1,2,3,4,5,6},M={x|x≤4}则M={5,6}.故选:B【点睛】本题考查求集合的补集,属于基础题.8、C【解析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.9、B【解析】在上解出方程,得出方程解的个数即可.详解】当时,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有个.故选B.【点睛】本题考查正切函数与正弦函数图象的交点个数,可以利用图形法解决,也转化为方程根的个数来处理,考查计算能力,属于中等题.10、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据函数的对称性,利用,建立方程进行求解即可【详解】若关于对称,则,即,即,则,则,,当时,,故答案为:12、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,13、【解析】根据幂函数定义求出值,再根据单调性确定结果【详解】由题意,解得或,又函数在区间上单调递减,则,∴故答案为:14、2【解析】根据扇形的面积公式即可求解.【详解】解:因为扇形的半径为2,弧长为2,所以该扇形的面积为,故答案为:2.15、7【解析】根据题意直接求解即可【详解】解:因为,所以,故答案为:716、【解析】在方向上的投影为考点:向量的投影三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1,,(2)时,有最大值;时,有最小值.【解析】(1)将化简为,解不等式,,即可得函数的单调递增区间;(2)由,得,从而根据正弦型函数的图象与性质,即可求解函数的最值【小问1详解】解:因为,,令,,得,,所以的单调递增区间为,;【小问2详解】解:因为,所以,所以,所以,当,即时,有最大值,当,即时,有最小值18、(1)(2)可以正常饮用【解析】(1)利用题中条件,列出等式,求解即可;(2)利用(1)中结论,当时,即可计算出保鲜时间,判断即可【小问1详解】由题意可知解得【小问2详解】由(1)知温度为3℃时保鲜的时间为:小时故可以正常饮用19、(1)证明见解析(2)到平面的距离为【解析】(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离20、(1)见解析;(2)【解析】(1)连接BD1,由中位线定理证明EF∥D1B,由线面平行的判定定理证明EF∥平面ABC1D1;(2)由(1)和异面直线所成角的定义,得异面直线EF与BC所成的角是∠D1BC,由题意和球的表面积公式求出外接球的半径,由勾股定理求出侧棱AA1的长,由直四棱柱的结构特征和线面垂直的定义,判断出BC⊥CD1,在RT△CC1D1中求出tan∠D1BC,求出∠D1BC可得答案.试题解析:(1)连接,在中,分别为线段的中点,∴为中位线,∴,而面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于大数据的阅读趋势预测
- 2025年海南省公需课学习-医疗卫生服务体系规划1119
- 2025年八大特殊作业安全填空题试题库及答案(共50题)
- 2025年新疆初中语文题库及答案
- 2025年策画师游戏测试题及答案
- 租赁公司租房合同范本
- 超市员工安全 合同范本
- 资产收购公司合同范本
- 因政策终止合同范本
- 荒地旱地出租合同范本
- 加盟2025年房地产经纪协议合同
- 2025至2030中国商业摄影行业市场发展分析及发展前景预测与投资风险报告
- 地球系统多源数据融合-洞察及研究
- 香水销售知识培训内容课件
- 工业产品早期可制造性评估标准
- DB45-T 2757.1-2023 交通运输行业安全风险评估规范 第1部分:总则
- 3.6运动和能量课件-科学三年级上册教科版-1
- 2025年酒店行业全球酒店管理与酒店服务创新研究报告
- 2025年及未来5年中国铜铝复合板带行业市场供需格局及行业前景展望报告
- Unit6Ouranimalfriends单词词汇(课件)-Joinin外研剑桥英语四年级上册
- 第9课 約束教学设计-2025-2026学年初中日语人教版2024七年级全一册-人教版
评论
0/150
提交评论