云南省石林彝族自治县民族中学2026届高二数学第一学期期末统考试题含解析_第1页
云南省石林彝族自治县民族中学2026届高二数学第一学期期末统考试题含解析_第2页
云南省石林彝族自治县民族中学2026届高二数学第一学期期末统考试题含解析_第3页
云南省石林彝族自治县民族中学2026届高二数学第一学期期末统考试题含解析_第4页
云南省石林彝族自治县民族中学2026届高二数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省石林彝族自治县民族中学2026届高二数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.482.已知双曲线,则双曲线的离心率为()A. B.C. D.3.在中,角A,B,C所对的边分别为a,b,c,,则的形状为()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形4.已知一个几何体的三视图如图,则其外接球的体积为()A. B.C. D.5.已知椭圆的左、右焦点分别为,为轴上一点,为正三角形,若,的中点恰好在椭圆上,则椭圆的离心率是()A. B.C. D.6.已知,若对于且都有成立,则实数的取值范围是()A. B.C. D.7.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或8.已知双曲线右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()A.2 B.C. D.9.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.10.若是函数的一个极值点,则的极大值为()A. B.C. D.11.在平行六面体ABCD﹣A1B1C1D1中,AC与BD的交点为M,设=,=,=,则=()A.++ B.+C.++ D.+12.在△ABC中,角A,B,C所对的边分别是a,b,c,若c=1,B=45°,cosA=,则b等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在点处的切线方程为___________.14.已知,则正整数___________.15.已知点P是双曲线右支上的一点,且以点P及焦点为定点的三角形的面积为4,则点P的坐标是_____________16.数据:1,1,3,4,6的方差是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,AC是圆O的直径,B是圆O上异于A,C的一点,平面ABC,点E在棱PB上,且,,.(1)求证:;(2)当三棱锥的体积最大时,求二面角的余弦值.18.(12分)某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数19.(12分)已知椭圆C:的右顶点为A,上顶点为B.离心率为,(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,过点F的直线l与椭圆C相交于D,E两点,直线:与x轴相交于点H,过点D作,垂足为①求四边形ODHE(O为坐标原点)面积的取值范围;②证明:直线过定点G,并求点G的坐标20.(12分)已知数列的前n项和(1)求的通项公式;(2)若数列的前n项和,求数列的前n项和21.(12分)已知函数f(x)=ax-2lnx(1)讨论f(x)的单调性;(2)设函数g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范围22.(10分)在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边垂直平分线所在的直线的方程;(2)若的面积为5,求点的坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用等差数列的前项和公式以及等差数列的性质即可求出.【详解】因为为等差数列的前项和,所以故选:D【点睛】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.2、D【解析】由双曲线的方程及双曲线的离心率即可求解.【详解】解:因为双曲线,所以,所以双曲线的离心率,故选:D.3、C【解析】根据三角恒等变换结合正弦定理化简求得,即可判定三角形形状.【详解】解:由题,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形为直角三角形.故选:C.4、D【解析】根据三视图还原几何体,将几何体补成长方体,计算出几何体的外接球直径,结合球体体积公式即可得解.【详解】根据三视图还原原几何体,如下图所示:由图可知,该几何体三棱锥,且平面,将三棱锥补成长方体,所以,三棱锥的外接球直径为,故,因此,该几何体的外接球的体积为.故选:D【点睛】方法点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解(2)若球面上四点P,A,B,C构成的三条线段两两互相垂直,一般把有关元素“补形”成为一个球内接长方体,利用求解5、A【解析】根据题意得,取线段的中点,则根据题意得,,根据椭圆的定义可知,然后解出离心率的值.【详解】因为为正三角形,所以,取线段的中点,连结,则,所以,得,所以椭圆的离心率.故选:A.【点睛】求解离心率及其范围的问题时,解题的关键在于画出图形,根据题目中的几何条件列出关于,,的齐次式,然后得到关于离心率的方程或不等式求解6、D【解析】根据题意转化为对于且时,都有恒成立,构造函数,转化为时,恒成立,求得的导数,转化为在上恒成立,即可求解.【详解】由题意,对于且都有成立,不妨设,可得恒成立,即对于且时,都有恒成立,构造函数,可转化为,函数为单调递增函数,所以当时,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即实数取值范围为.故选:D7、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.8、B【解析】,得出到渐近线的距离为,由此可得的关系,从而求得离心率【详解】因为,而,所以是等边三角形,到直线的距离为,又,渐近线方程取,即,所以,化简得故选:B9、B【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B10、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D11、B【解析】利用向量三角形法则、平行四边形法则、向量共线定理即可得出【详解】如图所示,∵=+,又=,=-,=,∴=+,故选:B12、C【解析】先由cosA的值求出,进而求出,用正弦定理求出b的值.【详解】因为cosA=,所以,所以由正弦定理:,得:.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对函数求导,由导数的几何意义可得切线的斜率,求得切点,由直线的点斜式方程可得所求切线的方程【详解】函数的导数为∴,.曲线在点处的切线方程为,即.故答案为:.14、6【解析】根据组合数和排列数的运算即可求得答案.【详解】由题意,,得.故答案为:6.15、【解析】由题可得P到x轴的距离为1,把代入,得,可得P点坐标【详解】设,由题意知,所以,则,由题意可得,把代入,得,所以P点坐标为故答案为:16、##3.6【解析】先计算平均数,再计算方差.【详解】该组数据的平均数为,方差为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由圆的性质可得,再由线面垂直的性质可得,从而由线面垂直的判定定理可得平面PAB,所以得,再结合已知条件可得平面PBC,由线面垂直的性质可得结论;(2)由已知条件结合基本不等式可得当三棱锥的体积最大时,是等腰直角三角形,,从而以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,利用空间向量求解.【小问1详解】证明:因为AC是圆O的直径,点B是圆O上不与A,C重合的一个动点,所以.因为平面ABC,平面ABC,所以.因为,且AB,平面PAB,所以平面PAB.因为平面PAB,所以.因为,,且BC,平面PBC,所以平面PBC.因为平面PBC,所以.【小问2详解】解:因为,,所以,所以三棱锥的体积,(当且仅当“”时等号成立).所以当三棱锥的体积最大时,是等腰直角三角形,.所以以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,则,,,.因为∽,所以,因为,,所以,所以,.设向量为平面的一个法向量,则即令得,.向量为平面ABC的一个法向量,.因为二面角是锐角,所以二面角的余弦值为.18、(1);(2)众数是,中位数为【解析】(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数试题解析:(1)由直方图的性质可得,∴(2)月平均用电量的众数是,∵,月平均用电量的中位数在内,设中位数为,由,可得,∴月平均用电量的中位数为224考点:频率分布直方图;中位数;众数19、(1);(2)①;②详见解析;.【解析】(1)由题得,即求;(2)①由题可设,利用韦达定理法可得,进而可得四边形ODHE面积,再利用对勾函数的性质可求范围;②由题可得,令,通过计算可得,即得.【小问1详解】由题可得,解得,∴椭圆C的标准方程.【小问2详解】①由题可知,可设直线,,由,可得,∴,,∴,∴四边形ODHE面积,令,则,因为,所以,当时,取等号,∴,∴四边形ODHE面积取值范围为;②由上可得,直线,令,得,由,可得,∴,∴直线过定点G.20、(1),;(2),.【解析】(1)根据的关系可得,根据等比数列的定义写出的通项公式,进而可得的通项公式;(2)利用的关系求的通项公式,结合(1)结论可得,再应用分组求和、错位相消法求的前n项和【小问1详解】.①当时,,可得当时,.②①-②得,则,而a1-1=1不为零,故是首项为1,公比为2的等比数列,则∴数列的通项公式为,【小问2详解】∵,∴当时,,当时,,又也适合上式,∴,∴,令,,则,又,∴21、(1)答案见解析;(2).【解析】(1)根据实数a的正负性,结合导数的性质分类讨论求解即可;(2)利用常变量分离法,通过构造函数,利用导数的性质进行求解即可.【小问1详解】当a≤0时,在(0,+∞)上恒成立;当a>0时,令得;令得;综上:a≤0时f(x)在(0,+∞)上单调递减;a>0时,f(x)在上单调递减,在上单调递增;【小问2详解】由题意知ax-2lnx≤x-2在(0,+∞)上有解则ax≤x-2+2lnx,令,xg'(x)+0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论