版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市普陀区曹杨二中数学高一上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为,则实数的取值范围是()A. B.C. D.2.设是定义在R上的奇函数,当时,(b为常数),则的值为()A.﹣6 B.﹣4C.4 D.63.已知函数,若,,,则()A. B.C. D.4.已知平面直角坐标系中,的顶点坐标分别为,,,G为所在平面内的一点,且满足,则G点的坐标为()A. B.C. D.5.函数的图象的相邻两支截直线所得的线段长为,则的值是()A. B.C. D.6.已知正数、满足,则的最小值为A. B.C. D.7.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.8.已知函数的定义域为R,是偶函数,,在上单调递增,则不等式的解集为()A. B.C D.9.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.10.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集是___________.12.已知,则_________13.求值:__________.14.函数的定义域为________15.函数,且)的图象恒过定点,则点的坐标为___________;若点在函数的图象上,其中,,则的最大值为___________.16.函数的定义域为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数.(1)若为偶函数,求在上的值域:(2)若时,的图象恒在直线的上方,求实数a的取值范围.18.已知点,,,.(1)若,求的值;(2)若,求的值.19.已知函数的定义域为,在上为增函数,且对任意的,都有(1)试判断的奇偶性;(2)若,求实数的取值范围20.已知,,求,实数a的取值范围21.已知,,求以及的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】将不等式的解集为,转化为不等式的解集为R,分和两种情况讨论求解.【详解】因为不等式的解集为,所以不等式的解集为R,当,即时,成立;当,即时,,解得,综上:实数的取值范围是故选:C【点睛】本题主要考查一元二次不等式恒成立问题,还考查了分类讨论的思想和运算求解的能力,属于基础题.2、B【解析】根据函数是奇函数,可得,求得,结合函数的解析式即可得出答案.【详解】解:因为是定义在R上的奇函数,当时,,,解得所以.故选:B.3、A【解析】可判断在单调递增,根据单调性即可判断.【详解】当时,单调递增,,,,.故选:A.4、A【解析】利用向量的坐标表示以及向量坐标的加法运算即可求解.【详解】由题意易得,,,.即G点的坐标为,故选:A.5、D【解析】由正切函数的性质,可以得到函数的周期,进而可以求出解析式,然后求出即可【详解】由题意知函数的周期为,则,所以,则.故选D.【点睛】本题考查了正切函数的性质,属于基础题6、B【解析】由得,再将代数式与相乘,利用基本不等式可求出的最小值【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题7、B【解析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.8、A【解析】由题意判断出函数关于对称,结合函数的对称性与单调性求解不等式.【详解】∵是偶函数,∴函数关于对称,∴,又∵在上单调递增,∴在单调递减,∴可化为,解得,∴不等式解集为.故选:A9、C【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.10、B【解析】直接利用三角函数的平移变换求解.【详解】因函数y=cos,所以要得到函数y=cos的图象,只需将函数y=cos2的图象向左平移个单位长度,故选:B【点睛】本题主要考查三角函数的图象的平移变换,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】把分式不等式转化为,从而可解不等式.【详解】因为,所以,解得或,所以不等式的解集是或.故答案为:或.12、【解析】利用交集的运算解题即可.【详解】交集即为共同的部分,即.故答案为:13、【解析】利用诱导公式一化简,再求特殊角正弦值即可.【详解】.故答案为:.14、【解析】根据偶次方根被开方数为非负数、对数真数大于零列不等式组,解不等式组求得函数的定义域.【详解】依题意,解得,故函数的定义域为.故答案为.【点睛】本小题主要考查具体函数定义域的求法,属于基础题.15、①②.##0.5【解析】根据对数函数图象恒过定点求出点A坐标;代入一次函数式,借助均值不等式求解作答.【详解】函数,且)中,由得:,则点;依题意,,而,,则,当且仅当2m=n=1时取“=”,即,所以点的坐标为,的最大值为.故答案为:;16、【解析】真数大于0求定义域.【详解】由题意得:,解得:,所以定义域为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)函数为二次函数,其对称轴为.由f(x)为偶函数,可得a=2,再利用二次函数的单调性求出函数f(x)在[−1,2]上的值域;(2)根据题意可得f(x)>ax恒成立,转化为恒成立,将参数分分离出来,再利用均值不等式判断的范围即可【小问1详解】根据题意,函数为二次函数,其对称轴为.若为偶函数,则,解得,则在上先减后增,当时,函数取得最小值9,当时,函数取得最大值13,即函数在上的值域为;【小问2详解】由题意知时,恒成立,即.所以恒成立,因为,所以,当且仅当即时等号成立.所以,解得,所以a的取值范围是.18、(1)(2)【解析】(1)利用列方程,化简求得.(2)利用列方程,结合同角三角函数的基本关系式、二倍角公式、两角差的余弦公式求得正确答案.【小问1详解】,,,,由于,所以.【小问2详解】若,则,,当时,上式不符合,所以,,所以,由两边平方并化简得,,所以,所以,.19、(1)奇函数(2)【解析】(1)抽象函数用赋值法,再结合函数奇偶性的定义判断即可;(2)利用奇函数的单调性和定义及函数的单调性,联立不等式不等式组,再解不等式组即可.【小问1详解】因为函数定义域为,令,得.令,得,即,所以函数为奇函数【小问2详解】由(1)知函数为奇函数,又知函数的定义域为,在上为增函数,所以函数在上为增函数因为,即,所以,解得,所以实数的取值范围为20、【解析】由题意利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年基金从业资格证考试题库500道含答案【夺分金卷】
- 2025年标准员之专业管理实务考试题库附参考答案【夺分金卷】
- 2026年教师资格之小学教育学教育心理学考试题库500道含答案(综合卷)
- 中铁第五勘察设计院集团有限公司人才招聘2125人备考题库及答案1套
- 2025四川广元市示范性综合实践基地管理中心招聘临聘教师1人考试笔试备考试题及答案解析
- 2026年质量员之土建质量专业管理实务考试题库200道【原创题】
- 2026年二级建造师之二建水利水电实务考试题库300道【研优卷】
- 2025湖北随州市随县事业单位专项招聘随军家属1人考试笔试参考题库附答案解析
- 2026年税务师考试题库附答案(黄金题型)
- 2025杭州师范大学下半年(冬季)招聘教学科研人员65人笔试考试备考题库及答案解析
- DB11T 2491-2025 文物保护工程勘察规范 长城
- 急性心肌梗死治疗课件
- 树木砍伐安全培训课件
- 风电场冬季防火知识培训课件
- 中国邮政2025南通市秋招综合管理职能类岗位面试模拟题及答案
- 源网荷储一体化项目并网调试实施方案
- 2025-2030奶山羊养殖效益分析及乳制品深加工与产业投资机会报告
- 《〈京津冀建设工程计价依据-预算消耗量定额〉城市地下综合管廊工程》第一册土建工程
- 儿科护理课件模板
- UPS不间断电源课件教学
- 2024年江苏省盐城市护理三基业务知识考试复习试卷及答案
评论
0/150
提交评论