版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省慈溪市六校2026届高一上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数2.在正方体ABCD-A1B1C1D1中,异面直线AD1和B1C所成的角是()A. B.C. D.3.若,,,,则,,的大小关系是A. B.C. D.4.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是A①和② B.②和③C.③和④ D.②和④5.某组合体的三视图如下,则它的体积是A. B.C. D.6.下列各角中,与角1560°终边相同的角是()A.180° B.-240°C.-120° D.60°7.函数的定义域是()A. B.C. D.(0,4)8.命题:,,则该命题的否定为()A., B.,C., D.,9.浙江省在先行探索高质量发展建设共同富裕示范区,统计数据表明,2021年前三季度全省生产总值同比增长10.6%,两年平均增长6.4%,倘若以8%的年平均增长率来计算,经过多少年可实现全省生产总值翻一番(,)()A.7年 B.8年C.9年 D.10年10.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若函数恰有两个不同的零点,则实数的取值范围是_____12.已知函数,,那么函数图象与函数的图象的交点共有__________个13.已知定义在R上的函数f(x),对任意实数x都有f(x+4)=-f(x),若函数f(x)的图象关于y轴对称,且f(-5)=2,则f(2021)=_____14.锐角中,分别为内角的对边,已知,,,则的面积为__________15.在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,____________.16.函数是幂函数,且在上是减函数,则实数__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,其中(1)若是的充分条件,求实数的取值范围;(2)是否存在,使得是的必要条件?若存在,求出的值;若不存在,请说明理由18.计算下列各式的值:(1)(2)19.已知函数的定义域是,设,(1)求的定义域;(2)求函数的最大值和最小值.20.已知.(1)求及;(2)若,,求的值.21.如图,角的终边与单位圆交于点,且.(1)求;(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.2、D【解析】正方体ABCD-A1B1C1D1的面对角线AD1和面对角线DA1所成的角就是异面直线AD1和B1C所成的角,利用正方体的性质即得【详解】由正方体的性质可知,,∴四边形为平行四边形,∴DA1∥B1C,∴正方体ABCD-A1B1C1D1的面对角线AD1和面对角线DA1所成的角就是异面直线AD1和B1C所成的角,∵四边形ADD1A1正方形,∴直线AD1和DA1垂直,∴异面直线AD1和B1C所成的角是90°故选:D3、D【解析】分析:利用指数函数与对数函数及幂函数的行贿可得到,再构造函数,通过分析和的图象与性质,即可得到结论.详解:由题意在上单调递减,所以,在上单调递则,所以,在上单调递则,所以,令,则其为单调递增函数,显然在上一一对应,则,所以,在坐标系中结合和的图象与性质,量曲线分别相交于在和处,可见,在时,小于;在时,大于;在时,小于,所以,所以,即,综上可知,故选D.点睛:本题主要考查了指数式、对数式和幂式的比较大小问题,本题的难点在于的大小比较,通过构造指数函数与一次函数的图象与性质分析解决问题是解答的关键,着重考查了分析问题和解答问题的能力,试题有一定难度,属于中档试题.4、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题5、A【解析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式6、B【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】与1560°终边相同的角为,,当时,.故选:B.7、C【解析】根据对数函数的单调性,结合二次根式的性质进行求解即可.【详解】由,故选:C8、B【解析】根据特称命题的否定可得出结论.【详解】由特称命题的否定可知,原命题的否定为:,.故选:B.【点睛】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题.9、D【解析】由题意,可得,,两边取常用对数,根据参数数据即可求解.【详解】解:设经过年可实现全省生产总值翻一番,全省生产总值原来为,由题意可得,即,两边取常用对数可得,所以,因为,所以,所以经过10年可实现全省生产总值翻一番.故选:D.10、C【解析】利用扇形面积公式即可求解.【详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】题目转化为,画出函数图像,根据图像结合函数值计算得到答案.详解】,,即,画出函数图像,如图所示:,,根据图像知:.故答案为:12、8【解析】在同一坐标系中,分别画出函数,及函数的图像,如图所示:由图可知,两个函数的图象共有8个交点故答案为8点睛:解决函数与方程问题的基本思想就是数形结合思想和等价转化思想,运用函数图象来研究函数零点或方程解的个数,在画函数图象时,切忌随手一画,可利用零点存在定理,结合函数图象的性质,如单调性,奇偶性,将问题简化.13、2【解析】先判断函数的奇偶性,再由恒成立的等式导出函数f(x)的周期,利用奇偶性及周期性化简求解即得.【详解】因为函数f(x)的图象关于y轴对称,则f(x)为偶函数,由f(x+4)=-f(x),可得f(x+8)=-f(x+4)=f(x),即函数f(x)的周期为8,则f(2021)=f(5+252×8)=f(5)=f(-5)=2,所以f(2021)=2.故答案为:214、【解析】由已知条件可得,,再由正弦定理可得,从而根据三角形内角和定理即可求得,从而利用公式即可得到答案.【详解】,由得,又为锐角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案为.【点睛】三角形面积公式的应用原则:(1)对于面积公式S=absinC=acsinB=bcsinA,一般是已知哪一个角就使用哪一个公式(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化15、【解析】因为角与角关于轴对称,所以,,所以,所以答案:16、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在,理由见解析【解析】(1)解不等式,由充分条件定义得出实数的取值范围;(2)由是的必要条件得出不等关系,结合作出判断.【小问1详解】由得,故有由得,即若p是q的充分条件,则成立,即得.【小问2详解】因为,所以或若是q的必要条件,则成立,则或,显然这两个不等式均与矛盾,故不存在满足条件的m18、(1)(2)【解析】(1)根据指数的运算性质进行求解即可;(2)根据对数的运算性质进行求解即可.【小问1详解】【小问2详解】19、(1)(2)最大值为,最小值为【解析】(1)根据的定义域列出不等式即可求出;(2)可得,即可求出最值.【小问1详解】的定义域是,,因为的定义域是,所以,解得于是定义域为.【小问2详解】设.因为,即,所以当时,即时,取得最小值,值为;当时,即时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026中泰证券股份招聘面试题及答案
- 2026云南绿色城市更新集团招聘面试题及答案
- 2026四川港航投资集团招聘面试题及答案
- 2026山东铁路投资控股集团招聘面试题及答案
- 行政实习生岗位面试题及办公软件应用含答案
- 软件测试工程师面试技巧及常见问题含答案
- 2026年土地登记代理人之土地权利理论与方法题库200道附答案【综合卷】
- 2024年浙江树人学院马克思主义基本原理概论期末考试题带答案
- 2026年阿勒泰职业技术学院单招职业技能测试题库附答案
- 2025年合肥市招聘劳务派遣制机场消防员7名二次考试笔试备考题库及答案解析
- XF-T 3004-2020 汽车加油加气站消防安全管理
- 行为金融学课件
- 低空经济产业园建设项目可行性研究报告
- 中考数学讲座中考数学解答技巧基础复习课件
- 短视频的拍摄与剪辑
- 单轴仿形铣床设计
- 全口义齿人工牙的选择与排列 28-全口义齿人工牙的选择与排列(本科终稿)
- 低压电缆敷设方案设计
- 原发性肝癌病人的护理原发性肝癌病人的护理
- GB/T 7324-2010通用锂基润滑脂
- 新能源有限公司光伏电站现场应急处置方案汇编
评论
0/150
提交评论