四川省遂宁市2026届高一上数学期末质量检测模拟试题含解析_第1页
四川省遂宁市2026届高一上数学期末质量检测模拟试题含解析_第2页
四川省遂宁市2026届高一上数学期末质量检测模拟试题含解析_第3页
四川省遂宁市2026届高一上数学期末质量检测模拟试题含解析_第4页
四川省遂宁市2026届高一上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省遂宁市2026届高一上数学期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数单调递增区间为A. B.C D.2.设,则A. B.C. D.3.在正方体AC1中,AA1与B1D所成角的余弦值是()A. B.C. D.4.命题p:∀x∈N,x3>x2的否定形式¬p为()A.∀x∈N,x3≤x2 B.∃x∈N,x3>x2C.∃x∈N,x3<x2 D.∃x∈N,x3≤x25.若定义域为R的函数满足,且,,有,则的解集为()A. B.C. D.6.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.7.已知集合,.则()A. B.C. D.8.已知函数,有下面四个结论:①的一个周期为;②的图像关于直线对称;③当时,的值域是;④在(单调递减,其中正确结论的个数是()A.1 B.2C.3 D.49.已知函数是定义在上的奇函数,当时,,则不等式的解集为()A. B.C.( D.10.为了给地球减负,提高资源利用率,2020年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2020年全年用于垃圾分类的资金为3000万元,在此基础上,以后每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是(参考数据:,,)()A2026年 B.2027年C.2028年 D.2029年二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y12.若函数部分图象如图所示,则此函数的解析式为______.13.函数的最小值为_________________14.若,则________.15.已知,则的大小关系是___________________.(用“”连结)16.已知函数,对于任意都有,则的值为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于四个正数,如果,那么称是的“下位序对”(1)对于,试求的“下位序对”;(2)设均为正数,且是的“下位序对”,试判断之间的大小关系.18.已知函数.(1)求最小正周期;(2)当时,求的值域.19.汕头市某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?20.在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的a存在,求a的值;若a不存在,请说明理由.已知集合________,.若“”是“”的充分不必要条件,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分21.已知,求下列各式的值:(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,所以.故选A2、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小3、A【解析】画出图象如下图所示,直线与所成的角为,其余弦值为.故选A.4、D【解析】根据含有一个量词命题的否定的定义求解.【详解】因为命题p:∀x∈N,x3>x2的是全称量词命题,其否定是存在量词命题,所以¬p:∃x∈N,x3≤x2故选:D【点睛】本题主要考查含有一个量词命题的否定,还考查了理解辨析的能力,属于基础题.5、A【解析】根据已知条件易得关于直线x=2对称且在上递减,再应用单调性、对称性求解不等式即可.【详解】由题设知:关于直线x=2对称且在上单调递减由,得:,所以,解得故选:A6、B【解析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.7、C【解析】直接利用交集的运算法则即可.【详解】∵,,∴.故选:.8、B【解析】函数周期.,故是函数的对称轴.由于,故③错误.,函数在不单调.故有个结论正确.【点睛】本题主要考查三角函数图像与性质,包括了周期性,对称性,值域和单调性.三角函数的周期性,其中正弦和余弦函数的周期都是利用公式来求解,而正切函数函数是利用公式来求解.三角函数的对称轴是使得函数取得最大值或者最小值的地方.对于选择题9、C【解析】根据奇偶性求分段函数的解析式,然后作出函数图象,根据单调性解不等式即可.【详解】因为当时,,且函数是定义在上的奇函数,所以时,,所以,作出函数图象:所以函数是上的单调递增,又因为不等式,所以,即,故选:C.10、B【解析】设经过年之后,投入资金为万元,根据题意列出与的关系式;1亿元转化为万元,令,结合参考数据即可求出的范围,从而判断出选项.【详解】设经过年之后,投入资金为万元,则,由题意可得:,即,所以,即,又因为,所以,即从2027年开始该市全年用于垃圾分类的资金超过1亿元.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x的集合为.【小问2详解】表格如下:x0y11作图如下,12、.【解析】由周期公式可得,代入点解三角方程可得值,进而可得解析式.【详解】由题意,周期,解得,所以函数,又图象过点,所以,得,又,所以,故函数的解析式为.故答案为:.【点睛】本题考查三角函数解析式的求解,涉及系数的意义,属于基础题.13、【解析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【点睛】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键14、【解析】由,根据三角函数的诱导公式进行转化求解即可.详解】,,则,故答案为:.15、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.16、【解析】由条件得到函数的对称性,从而得到结果【详解】∵f=f,∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.∴f=±2.【点睛】本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据新定义,代入计算判断即可;(2)根据新定义得到ad<bc,再利用不等式的性质,即可判断.【详解】(1),的“下位序对”是.(2)是的“下位序对”,,均为正数,,即,,同理可得,综上所述,【点睛】关键点点睛:对于本题关键理解,如果,那么称是的“下位序对”这一新定义,理解此定义后,利用不等式性质求解即可.18、(1)(2)【解析】(1)根据辅角公式可得,由此即可求出的最小正周期;(2)根据,可得,在结合正弦函数的性质,即可求出结果.【小问1详解】解:所以最小正周期为;【小问2详解】,,的值域为.19、(1)2400(元);(2)应将售价定为125元,最大销售利润是2500元.【解析】(1)由销售利润=单件成本×销售量,即可求商家降价前每星期销售利润;(2)由题意得,根据二次函数的性质即可知最大销售利润及对应的售价.【详解】(1)由题意,商家降价前每星期的销售利润为(元);(2)设售价定为元,则销售利润.当时,有最大值2500.∴应将售价定为125元,最大销售利润是2500元.20、见解析【解析】首先解一元二次不等式求出集合B,依题意B,再根据所选条件得到不等式组,解得即可;【详解】解:由,所以,解得所以.由题意知,A不为空集,选条件①时,,因为“”是“”充分不必要条件,所以B,,则,等号不同时取到,解得.所以实数a的取值范围是.当选条件②时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论