2026届辽宁省大连市普兰店区第二中学高二上数学期末预测试题含解析_第1页
2026届辽宁省大连市普兰店区第二中学高二上数学期末预测试题含解析_第2页
2026届辽宁省大连市普兰店区第二中学高二上数学期末预测试题含解析_第3页
2026届辽宁省大连市普兰店区第二中学高二上数学期末预测试题含解析_第4页
2026届辽宁省大连市普兰店区第二中学高二上数学期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届辽宁省大连市普兰店区第二中学高二上数学期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l1:y=x+2与l2:2ax+y﹣1=0垂直,则a=()A. B.C.﹣1 D.12.直线的一个方向向量为,则它的斜率为()A. B.C. D.3.如图,已知正方体,点P是棱中点,设直线为a,直线为b.对于下列两个命题:①过点P有且只有一条直线l与a、b都相交;②过点P有且只有两条直线l与a、b都成角.以下判断正确的是()A.①为真命题,②为真命题 B.①为真命题,②为假命题C.①为假命题,②为真命题 D.①为假命题,②为假命题4.设直线的倾斜角为,且,则满足A. B.C. D.5.在数列中,若,,则()A.16 B.32C.64 D.1286.已知,则()A. B.C. D.7.已知抛物线的焦点为F,直线l经过点F交抛物线C于A,B两点,交抛物浅C的准线于点P,若,则为()A.2 B.3C.4 D.68.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点9.已知椭圆的离心率,为椭圆上的一个动点,若定点,则的最大值为A. B.C. D.10.如图,某绿色蔬菜种植基地在A处,要把此处生产的蔬菜沿道路或运送到形状为四边形区域的农贸市场中去,现要求在农贸市场中确定一条界线,使位于界线一侧的点沿道路运送蔬菜较近,而另一侧的点沿道路运送蔬菜较近,则该界线所在曲线为()A.圆 B.椭圆C.双曲线 D.抛物线11.如图,在三棱锥S-ABC中,E,F分别为SA,BC的中点,点G在EF上,且满足,若,,,则()A. B.C. D.12.设为双曲线与椭圆的公共的左右焦点,它们在第一象限内交于点是以线段为底边的等腰三角形,若椭圆的离心率范围为,则双曲线的离心率取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若p:存在,使是真命题,则实数a的取值范围是______14.函数的单调递减区间是___________.15.已知空间向量,,且,则值为______16.一条直线过点,且与抛物线交于,两点.若,则弦中点到直线的距离等于__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数(1)若在处取得极值,求a的值;(2)若在上单调递减,求a的取值范围18.(12分)已知椭圆的离心率为,椭圆过点.(1)求椭圆C的方程;(2)过点的直线交椭圆于M、N两点,已知直线MA,NA分别交直线于点P,Q,求的值.19.(12分)记为数列的前项和,且(1)求的通项公式;(2)设,求数列的前项和20.(12分)已知函数的图象在点处的切线与直线平行(是自然对数的底数).(1)求的值;(2)若在上恒成立,求实数的取值范围.21.(12分)已知抛物线的焦点,点在抛物线上.(1)求;(2)过点向轴作垂线,垂足为,过点的直线与抛物线交于两点,证明:为直角三角形(为坐标原点).22.(10分)已知一张纸上画有半径为4圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用两直线垂直斜率关系,即可求解.【详解】直线l1:y=x+2与l2:2ax+y﹣1=0垂直,.故选:A【点睛】本题考查两直线垂直间的关系,属于基础题.2、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A3、A【解析】①由正方形的性质,可以延伸正方形,再利用两条平行线确定一个平面即可;②一组邻边与对角面夹角相等,在平面内绕P转动,可以得到二条直线与a、b的夹角都等于.【详解】如下图所示,在侧面正方形和再延伸一个正方形和,则平面和在同一个平面内,所以过点P,有且只有一条直线l,即与a、b相交,故①为真命题;取中点N,连PN,由于a、b为异面直线,a、b的夹角等于与b的夹角.由于平面,平面,,所以平面,所以与与b的夹角都为.又因为平面,所以与与b的夹角都为,而,所以过点P,在平面内存在一条直线,使得与与b的夹角都为,同理可得,过点P,在平面内存在一条直线,使得与与的夹角都为;故②为真命题.故选:A4、D【解析】因为,所以,,,,故选D5、C【解析】根据题意,为等比数列,用基本量求解即可.【详解】因为,故是首项为2,公比为2的等比数列,故.故选:C6、C【解析】取中间值,化成同底利用单调性比较可得.【详解】,,,故,故选:C7、C【解析】由题意可知设,由可得,可求得,,根据模长公式计算即可得出结果.【详解】由题意可知,准线方程为,设,可知,,解得:,代入到抛物线方程可得:.,故选:C8、D【解析】根据导函数与原函数的关系可求解.【详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D9、C【解析】首先求得椭圆方程,然后确定的最大值即可.【详解】由题意可得:,据此可得:,椭圆方程为,设椭圆上点的坐标为,则,故:,当时,.本题选择C选项.【点睛】本题主要考查椭圆方程问题,椭圆中的最值问题等知识,意在考查学生的转化能力和计算求解能力.10、C【解析】设是界限上的一点,则,即,再根据双曲线的定义即可得出答案.【详解】解:设是界限上的一点,则,所以,即,在中,,所以点的轨迹为双曲线,即该界线所在曲线为双曲线.故选:C.11、B【解析】利用空间向量基本定理结合已知条件求解【详解】因为,所以,因为E,F分别为SA,BC的中点,所以,故选:B12、A【解析】设椭圆的标准方程为,根据椭圆和双曲线的定义可得到两图形离心率之间的关系,再根据椭圆的离心率范围可得双曲线的离心率取值范围.【详解】设椭圆的标准方程为,,则有已知,两式相减得,即,,因为,解得故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将问题分离参数得到存在,使成立,可得结论.【详解】存在,使,即存在,使,所以故答案为:14、【解析】首先对求导,可得,令,解可得答案【详解】解:由得,故的单调递减区间是故答案为:【点睛】本题考查利用导数研究函数的单调性,属于基础题.15、【解析】利用向量的坐标运算及向量数量积的坐标表示即求.【详解】由题意,空间向量,可得,所以,解得.故答案为:.16、【解析】求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离【详解】解:如图,抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)对求导,再根据题意有,据此列式求出;(2)由题可知对恒成立,即对恒成立,因此求出在区间上的最小值即可得出结论.【详解】(1),则,因为在处取得极值,所以,解得,经检验,当时,在处取得极值;(2)因为在上单调递减,所以对恒成立,则对恒成立,∵当时,,∴,即a的取值范围为.【点睛】本题主要考查利用函数的单调性与极值求参,需要学生对相关基础知识牢固掌握且灵活运用.18、(1)(2)1【解析】(1)由题意得到关于a,b的方程组,求解方程组即可确定椭圆方程;(2)首先联立直线与椭圆的方程,然后由直线MA,NA的方程确定点P,Q的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得,从而可得两线段长度的比值.【小问1详解】由题意,点椭圆上,有,解得故椭圆C的方程为.【小问2详解】当直线l的斜率不存在时,显然不符;当直线l的斜率存在时,设直线l为:联立方程得:由,设,有又由直线AM:,令x=-4得,将代入得:,同理得:.很明显,且,注意到,,而,故所以.【点睛】本题考查求椭圆的方程,解题关键是利用离心率与椭圆上的点,找到关于a,b,c的等量关系求解a与b.本题中直线方程代入椭圆方程整理后应用韦达定理求出,.表示出,,然后转化为相应的比值关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题19、(1)(2)【解析】(1)利用,再结合等比数列的概念,即可求出结果;(2)由(1)可知数列是以为首项,公差为的等差数列,根据等差数列的前项和公式,即可求出结果.【小问1详解】解:当时,,解得;当且时,所以所以是以为首项,为公比的等比数列所以;【小问2详解】解:由(1)可知,所以,又,所以数列是以为首项,公差为的等差数列,所以数列的前项和.20、(1)(2)【解析】(1)求出函数的导函数,根据题意结合导数的几何意义列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,从而,令,利用导数求出函数的最小值,即可求得实数的取值范围【小问1详解】解:,因为函数的图象在点处的切线与直线平行,所以,解得;【小问2详解】解:在上恒成立,即在上恒成立,,,令,则,当时,;当时,,函数在上单调递减,有上单调递增,,,即实数的取值范围是21、(1)(2)证明见解析【解析】(1)点代入即可得出抛物线方程,根据抛物线的定义即可求得.(2)由题,设直线的方程为:,与抛物线方程联立,可得,利用韦达定理证得即可得出结论.【小问1详解】点在抛物线上.,则,所以.【小问2详解】证明:由题,设直线的方程为:,点联立方程,消得:,由韦达定理有,由,所以,所以,所以,所以为直角三角形.22、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论