2026届山东省威海市高二上数学期末监测试题含解析_第1页
2026届山东省威海市高二上数学期末监测试题含解析_第2页
2026届山东省威海市高二上数学期末监测试题含解析_第3页
2026届山东省威海市高二上数学期末监测试题含解析_第4页
2026届山东省威海市高二上数学期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省威海市高二上数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A B.2C. D.2.已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A. B.C.5 D.53.已知奇函数是定义在R上的可导函数,的导函数为,当时,有,则不等式的解集为()A. B.C. D.4.已知,是双曲线的左、右焦点,点A是的左顶点,为坐标原点,以为直径的圆交的一条渐近线于、两点,以为直径的圆与轴交于两点,且平分,则双曲线的离心率为()A. B.2C. D.35.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.6.2020年北京时间11月24日我国嫦娥五号探月飞行器成功发射.嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段.在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为8600公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为()A.0.32 B.0.48C.0.68 D.0.827.若直线与曲线有公共点,则b的取值范围是()A. B.C. D.8.已知,则()A. B.C. D.9.在中,,,,则此三角形()A.无解 B.一解C.两解 D.解的个数不确定10.点F是抛物线的焦点,点,P为抛物线上一点,P不在直线AF上,则△PAF的周长的最小值是()A.4 B.6C. D.11.设分别为圆和椭圆上的点,则两点间的最大距离是A. B.C. D.12.在直三棱柱中,底面是等腰直角三角形,,点在棱上,且,则与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆,圆,则两圆的公切线条数是___________.14.已知函数在处有极值.则=________15.抛物线的准线方程是___________.16.已知等差数列中,,,则______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式中二项式系数和为16(1)求展开式中二项式系数最大的项;(2)设展开式中的常数项为p,展开式中所有项系数的和为q,求18.(12分)已知抛物线:的焦点是圆与轴的一个交点.(1)求抛物线的方程;(2)若过点的直线与抛物线交于不同的两点A、B,О为坐标原点,证明:.19.(12分)△ABC的三个顶点分别为(1)求△ABC的外接圆M的方程;(2)设直线与圆M交于两点,求|PQ|的值20.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.21.(12分)在等差数列中.,(1)求的通项公式:(2)记的前项和为,求满足的的最大值22.(10分)已知函数.(1)求函数的极值;(2)若对恒成立,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.2、C【解析】先求出B(3,4,0),由此能求出||【详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C3、B【解析】根据给定的不等式构造函数,再探讨函数的性质,借助性质解不等式作答.【详解】依题意,令,因是R上的奇函数,则,即是R上的奇函数,当时,,则有在单调递增,又函数在R上连续,因此,函数在R上单调递增,不等式,于是得,解得,所以原不等式的解集是.故选:B4、B【解析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,,,所以,因为,所以又因为平分,所以,由,得,所以,即所以故选:B5、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C6、C【解析】由题意可知,求出的值,从而可求出椭圆的离心率【详解】解:由题意得,解得,所以离心率,故选:C7、D【解析】将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:当直线经过时最大,即,当直线与下半圆相切时最小,由圆心到直线距离等于半径2,可得:解得(舍去),或结合图象可得故选:D.8、B【解析】根据基本初等函数的导数公式及求导法则求导函数即可.【详解】.故选:B.9、C【解析】利用正弦定理求出的值,再根据所求值及a与b的大小关系即可判断作答.【详解】在中,,,,由正弦定理得,而为锐角,且,则或,所以有两解故选:C10、C【解析】由抛物线的定义转化后求距离最值【详解】抛物线的焦点,准线为过点作准线于点,故△PAF的周长为,,可知当三点共线时周长最小,为故选:C11、D【解析】转化为圆心到椭圆上点的距离的最大值加(半径).【详解】设,圆心为,则,当时,取到最大值,∴最大值为故选:D.【点睛】本题考查圆上点与椭圆上点的距离的最值问题,解题关键是圆上的点转化为圆心,利用圆心到动点距离的最值加(或减)半径得出结论12、C【解析】取AC的中点M,过点M作,且使得,进而证明平面,然后判断出是与平面所成的角,最后求出答案.【详解】如图,取AC的中点M,因为,则,过点M作,且使得,则四边形BDNM是平行四边形,所以.由题意,平面ABC,则平面ABC,而平面ABC,所以,又,所以平面,而所以平面,连接DA,NA,则是与平面所成的角.而,于是,.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先把圆的一般方程化为标准方程,进一步求出两圆的位置关系,可得两圆的公切线条数.【详解】解:由圆,可得:,可得其圆心为,半径为;由,可得,可得其圆心为,半径为2;所以可得其圆心距为:,可得:,故两圆相交,其公切线条数为,故答案为:2.【点睛】本题主要考查两圆的位置关系及两圆公切线条数的判断,属于中档题.14、4【解析】根据极值点概念求解【详解】,由题意得,,经检验满足题意故答案为:415、【解析】先根据抛物线方程求出,进而求出准线方程.【详解】抛物线为,则,解得:,准线方程为:.故答案为:16、【解析】设等差数列的公差为,依题意得到方程,求出公差,再根据等差数列通项公式计算可得;【详解】解:设等差数列的公差为,因为,,所以,所以,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由二项式系数和的性质得出,再由性质求出展开式中二项式系数最大的项;(2)由通项得出,利用赋值法得出,再求解【小问1详解】由题意可得,解得.,展开式中二项式系数最大的项为;【小问2详解】,其展开式的通项为,令,得∴常数项令,可得展开式中所有项系数的和为,∴18、(1)(2)证明见解析【解析】(1)由圆与轴的交点分别为,可得抛物线的焦点为,从而即可求解;(2)设直线为,联立抛物线方程,由韦达定理及,求出即可得证.【小问1详解】解:由题意知,圆与轴的交点分别为,则抛物线的焦点为,所以,所以抛物线方程为;【小问2详解】证明:设直线为,联立方程,有,所以,所以,所以.19、(1);(2).【解析】(1)设出圆的一般方程,根据的坐标满足圆方程,待定系数,即可求得圆方程;(2)根据(1)中所求圆方程,结合弦长公式,即可求得结果.【小问1详解】设圆M的方程为,因为都在圆上,则,解得,故圆M的方程为,也即.【小问2详解】由(1)可知,圆M的圆心坐标为,半径为,点M到直线的距离故.20、(1)(2)(3)分【解析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组的频率为,第五组的频率为,第六组的频率为,所以第百分位数为.也即合格分数线为.【小问3详解】名学生的平均得分为分.21、(1)(2)【解析】(1)根据等差数列的概念及通项公式可得基本量,进而可得解.(2)利用等差数列求和公式计算,解不等式即可.【小问1详解】设等差数列的公差为,所以,解得,所以数列的通项公式为;【小问2详解】由(1)得,所以,解得,所以的最大值为.22、(1)极大值为,无极小值(2)【解析】(1)求函数的导数,根据导数的正负判断极值点,代入原函数计算即可;(2)将变形,即对恒成立,然后构造函数,利用求导判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论