上海市复旦大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第1页
上海市复旦大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第2页
上海市复旦大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第3页
上海市复旦大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第4页
上海市复旦大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市复旦大学附中2026届高二数学第一学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件2.数列,,,,…,的通项公式可能是()A. B.C. D.3.若直线与直线垂直,则()A.6 B.4C. D.4.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.35.方程有两个不同的解,则实数k的取值范围为()A. B.C. D.6.若且,则下列不等式中一定成立的是()A. B.C. D.7.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.48.已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A. B.C. D.9.数列,,,,…,是其第()项A.17 B.18C.19 D.2010.椭圆的左右焦点分别为,是上一点,轴,,则椭圆的离心率等于()A. B.C. D.11.已知函数.设命题的定义域为,命题的值域为.若为真,为假,则实数的取值范围是()A. B.C. D.12.已知某地区7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,从中随机选一人,则此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.03745二、填空题:本题共4小题,每小题5分,共20分。13.已知圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,则圆心的轨迹方程为______,若点,,则周长的最小值为______14.已知锐角的内角,,的对边分别为,,,且.若,则外接圆面积的最小值为______15.若经过点且斜率为1的直线与抛物线交于,两点,则______.16.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆与x轴交于A,B两点,P是该圆上任意一点,AP,PB的延长线分别交直线于M,N两点.(1)若弦AP长为2,求直线PB的方程;(2)以线段MN为直径作圆C,当圆C面积最小时,求此时圆C的方程.18.(12分)已知抛物线的焦点为F,点在抛物线上,且在第一象限,的面积为(O为坐标原点).(1)求抛物线的标准方程;(2)经过点的直线与交于,两点,且,异于点,若直线与的斜率存在且不为零,证明:直线与的斜率之积为定值.19.(12分)如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求证:EF//平面PAD;(Ⅱ)求三棱锥C—PBD的体积.20.(12分)已知椭圆过点,且离心率.(1)求椭圆的方程;(2)设直交椭圆于两点,判断点与以线段为直径的圆的位置关系,并说明理由.21.(12分)已知函数,当时,函数有极值1.(1)求函数的解析式;(2)若关于x的方程有一个实数根,求实数m的取值范围.22.(10分)如图,正方体的棱长为4,E,F分别是上的点,且.(1)求与平面所成角的正切值;(2)求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据充要条件的定义进行判断【详解】解:因为函数为增函数,由,所以,故“”是“”的充分条件,由,所以,故“”是“”的必要条件,故“”是“”的充要条件故选:C2、D【解析】利用数列前几项排除A、B、C,即可得解;【详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D3、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.4、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A5、C【解析】转化为圆心在原点半径为1的上半圆和表示恒过定点的直线始终有两个公共点,结合图形可得答案.【详解】令,平方得表示圆心在原点半径为1的上半圆,表示恒过定点的直线,方程有两个不同的解即半圆和直线要始终有两个公共点,如图圆心到直线的距离为,解得,当直线经过时由得,当直线经过时由得,所以实数k的取值范围为.故选:C.6、D【解析】根据不等式的性质即可判断.【详解】对于A,若,则不等式不成立;对于B,若,则不等式不成立;对于C,若均为负值,则不等式不成立;对于D,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.7、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.8、C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,所以,整理得,即,解得,又所以.故选:C.9、D【解析】根据题意,分析归纳可得该数列可以写成,,,……,,可得该数列的通项公式,分析可得答案.【详解】解:根据题意,数列,,,,…,,可写成,,,……,,对于,即,为该数列的第20项;故选:D.【点睛】此题考查了由数列的项归纳出数列的通项公式,考查归纳能力,属于基础题.10、A【解析】在中结合已知条件,用焦距2c表示、,再利用椭圆定义计算作答.【详解】令椭圆的半焦距为c,因是上一点,轴,,在中,,,由椭圆定义知,则,所以椭圆的离心率等于.故选:A11、C【解析】根据一元二次不等式恒成立和二次函数值域可求得为真命题时的取值范围,根据和的真假性可知一真一假,分类讨论可得结果.【详解】若命题为真,则在上恒成立,,;若命题为真,则的值域包含,则或,;为真,为假,一真一假,若真假,则;若假真,则;综上所述:实数的取值范围为.故选:C.12、D【解析】设出事件,利用全概率公式进行求解.【详解】用事件A,B分别表示随机选1人为男性或女性,用事件C表示此人恰是色盲,则,且A,B互斥,故故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】设,圆半径为,进而根据题意得,,进而得其轨迹方程为双曲线,再根据双曲线的定义,将周长转化为求的最小值,进而求解.【详解】解:如图1,因为圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,所以,,所以中点,则,,所以,故设,圆半径为,则,,,所以,即所以圆心的轨迹方程为,表示双曲线,焦点为,,如图2,连接,由双曲线的定义得,即,所以周长为,因为,所以周长的最小值为故答案为:;.14、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范围,再利用正弦定理求出外接圆的半径,即可求出外接圆的面积;【详解】解:因为,所以,解得或(舍去).又为锐角三角形,所以.因为,当且仅当时等号成立,所以.外接圆的半径,故外接圆面积的最小值为故答案为:15、【解析】由题意写出直线的方程与抛物线方程联立,得出韦达定理,由弦长公式可得答案.【详解】设,则直线的方程为由,得所以所以故答案为:16、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】(1)根据圆的直径的性质,结合锐角三角函数定义进行求解即可;(2)根据题意,结合基本不等式和圆的标准方程进行求解即可.【小问1详解】在方程中,令,解得,或,因为AP,PB的延长线分别交直线于M,N两点,所以,圆心在x轴上,所以,因为,,所以有,当P在x轴上方时,直线PB的斜率为:,所以直线PB的方程为:,当P在x轴下方时,直线PB的斜率为:,所以直线PB的方程为:,因此直线PB的方程为或;【小问2详解】由(1)知:,,所以设直线的斜率为,因此直线的斜率为,于是直线的方程为:,令,,即直线的方程为:,令,,即,因为同号,所以,当且仅当时取等号,即当时取等号,于是有以线段MN为直径作圆C,当圆C面积最小时,此时最小,当时,和,中点坐标为:,半径为,所以圆的方程为:,同理当时,和,中点坐标为:,半径为,所以圆的方程为:,综上所述:圆C的方程为.18、(1);(2)证明见解析.【解析】(1)由题可得,然后结合面积公式可得,即求;(2)通过分类讨论,利用韦达定理法结合斜率公式计算即得.【小问1详解】因为点抛物线上,所以,,,因为,故解得,抛物线方程为;【小问2详解】当直线的斜率不存在时,直线为,得,.,,则.当直线的斜率存在时,设直线为,设,,联立得:因为,所以,.所以,所以直线与的斜率之积为定值.19、(1)见解析(2)【解析】本试题主要是考查了线面平行的判定和三棱锥体积的求解的综合问题.培养了同学们的推理论证能力和计算能力(1)根据已知的条件关键是分析出EF//PA,利用线面平行判定定理得到(2)根据上一问中的结论可知PM⊥平面ABCD.然后利用转换顶点的思想求解棱锥的体积解:(Ⅰ)证明:连接AC,则F是AC的中点,E为PC的中点,故在CPA中,EF//PA,且PA平面PAD,EF平面PAD,∴EF//平面PAD(Ⅱ)取AD的中点M,连接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.在直角PAM中,求得PM=,∴PM=20、(1)(2)点G在以AB为直径的圆外【解析】解法一:(Ⅰ)由已知得解得所以椭圆E的方程为(Ⅱ)设点AB中点为由所以从而.所以.,故所以,故G在以AB为直径的圆外解法二:(Ⅰ)同解法一.(Ⅱ)设点,则由所以从而所以不共线,所以锐角.故点G在以AB为直径的圆外考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点和圆的位置关系21、(1)(2)【解析】(1)根据,可得可得结果.(2)根据等价转换的思想,可得,利用导数研究函数的单调性,并比较的极值与的大小关系,可得结果.【详解】(1)由,有,又有,解得:,,故函数的解析式为(2)由(1)有可知:故函数的增区间为,,减区间为,所以的极小值为,极大值为由关于x的方程有一个实数根,等价于方程有一个实数根,即等价于函数的图像只有一个交点实数m的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论