版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华一中2026届数学高一上期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.条件p:|x|>x,条件q:,则p是q的()A.充要条件 B.既不充分也不必要条件C.必要不充分条件 D.充分不必要条件2.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2)C.(2,3) D.(3,4)3.下列函数是偶函数且值域为的是()①;②;③;④A.①② B.②③C.①④ D.③④4.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.5.已知函数,则在上的最大值与最小值之和为()A. B.C. D.6.已知函数,记,,,则,,的大小关系为()A. B.C. D.7.若,则下列不等式成立的是()A. B.C. D.8.已知函数,若函数恰有两个零点,则实数的取值范围是A. B.C. D.9.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.10.定义在上的偶函数的图象关于直线对称,当时,.若方程且根的个数大于3,则实数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.___________.12.在三棱锥中,,,两两垂直,,,三棱锥的侧面积为13,则该三棱锥外接球的表面积为______.13.已知点,,在函数的图象上,如图,若,则______.14.设函数,其图象的一条对称轴在区间内,且的最小正周期大于,则的取值范围是____________15.已知,则的值为___________.16.已知正三棱柱的棱长均为2,则其外接球体积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,,记,且为正实数),(1)求证:;(2)将与的数量积表示为关于的函数;(3)求函数的最小值及此时角的大小18.已知,且是第四象限角.(1)求和的值;(2)求的值;19.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积20.已知集合,.(1)若,求实数的值;(2)若,求实数的取值范围.21.如图,在三棱锥中,平面平面为等边三角形,且分别为的中点(1)求证:平面;(2)求证:平面平面;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】解不等式得到p:,q:或,根据推出关系得到答案.【详解】由得:,所以p:,而,解得:或,故q:或,因为或,且或,故p是q的充分不必要条件故答案为:D2、B【解析】求出、,由及零点存在定理即可判断.【详解】,,,则函数的一个零点落在区间上.故选:B【点睛】本题考查零点存在定理,属于基础题.3、C【解析】根据奇偶性的定义依次判断,并求函数的值域即可得答案.【详解】对于①,是偶函数,且值域为;对于②,是奇函数,值域为;对于③,是偶函数,值域为;对于④,偶函数,且值域为,所以符合题意的有①④故选:C.4、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.5、D【解析】首先利用两角和与差的正弦公式将函数化简为,当时,,由正弦型函数的单调性即可求出最值.【详解】当时,,所以最大值与最小值之和为:.故选:D【点睛】本题考查两角和与差的正弦公式,正弦型函数的单调性与最值,属于基础题.6、C【解析】根据题意得在上单调递增,,进而根据函数的单调性比较大小即可.【详解】解:因为函数定义域为,,故函数为奇函数,因为在上单调递增,在上单调递减,所以在上单调递增,因为,所以,所以,故选:C.7、D【解析】根据不等式的性质逐项判断可得答案.【详解】对于A,因为,,故,故A错误对于B,因为,,故,故,故B错误对于C,取,易得,故C错误对于D,因为,所以,故D正确故选:D8、A【解析】因为,且各段单调,所以实数的取值范围是,选A.点睛:已知函数零点求参数的范围的常用方法,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解9、C【解析】利用扇形面积公式即可求解.【详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.10、D【解析】由题设,可得解析式且为周期为4的函数,再将问题转化为与交点个数大于3个,讨论参数a判断交点个数,进而画出和的图象,应用数形结合法有符合题设,即可求范围.【详解】由题设,,即,所以是周期为4的函数,若,则,故,所以,要使且根的个数大于3,即与交点个数大于3个,又恒过,当时,在上,在上且在上递减,此时与只有一个交点,所以.综上,、的图象如下所示,要使交点个数大于3个,则,可得.故选:D【点睛】关键点点睛:根据已知条件分析出的周期性,并求出上的解析式,将问题转化为两个函数的交点个数问题,结合对数函数的性质分析a的范围,最后根据交点个数情况,应用数形结合进一步缩小参数的范围.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:12、【解析】根据侧面积计算得到,再计算半径为,代入表面积公式得到答案.【详解】三棱锥的侧面积为,所以故该三棱锥外接球的半径为:,球的表面积为.故答案为:【点睛】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.13、【解析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【点睛】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.14、【解析】由题可得,利用正弦函数的性质可得对称轴为,结合条件即得.【详解】∵,由,得,当时,,则,解得此时,当时,,则,解得此时,不合题意,当取其它整数时,不合题意,∴.故答案:.15、##【解析】根据给定条件结合二倍角的正切公式计算作答.【详解】因,则,所以的值为.故答案为:16、【解析】分别是上,下底面的中心,则的中点为几何体的外接球的球心,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)2,.【解析】(1)由,得到,根据,即可求解;(2)由,整理得,即可求得表达式;(3)由(2)知,结合基本不等式,求得的最小值,再利用向量的夹角公式,即可求解.【详解】(1)在中,,可得,所以,所以.(2)由,可得,即,整理得,所以(3)由(2)知,因为为正实数,则,当且仅当时,即时,等号成立,所以的最小值为2,即,此时,因为,可得,又因为,此时为等边三角形,所以【点睛】求平面向量的模的2种方法:1、利用及,把向量模的运算转化为数量积的运算;2、利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.18、(1),;(2).【解析】(1)根据象限和公式求出的正弦,再用倍角公式计算即可(2)求出角正切值,再展开,代入计算即可.【详解】解:(1),由得,,又是第四象限角,,,,.(2)由(1)可知,,.19、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代入直线l的方程得,②解得或(舍去)所以直线l的方程为因为圆心到直线l的距离,所以因为N到直线l的距离所以20、(1)(2)或【解析】(1)求出集合,再根据列方程求解即可;(2)根据分,讨论求解.【小问1详解】由已知得,解得;【小问2详解】当时,,得当时,或,解得或,综合得或.21、(1)证明见解析;(2)证明见解析.【解析】(1)因为分别为的中点,所以,由线面平行的判定定理,即可得到平面;(2)因为为的中点,得到,利用面面垂直的性质定理可证得平面,由面面垂直的判定定理,即可得到平面平面【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年农家乐承包经营合同
- 2026年科研设施与仪器开放共享服务合同
- 2026年建筑医院古太空合同
- 干细胞研究合作协议
- 2025年社区共享经济服务项目可行性研究报告
- 2025年全自动洗衣机技术升级项目可行性研究报告
- 2025年在线医疗健康管理平台项目可行性研究报告
- 2025年AI读书机器人开发项目可行性研究报告
- 2025年水产品智能仓储物流项目可行性研究报告
- 美工制作合同范本
- DL-T 606.4-2018 火力发电厂能量平衡导则 第4部分:电平衡
- 《普通心理学课程论文3600字(论文)》
- GB/T 5209-1985色漆和清漆耐水性的测定浸水法
- 12YJ6 外装修标准图集
- GB/T 14388-2010木工硬质合金圆锯片
- 大三上学期-免疫学第11章
- 《弹性波动力学》课程教学大纲
- 关于绩效考核与绩效工资分配工作的通知模板
- 2023第九届希望杯初赛六年级(含解析)
- OpenStack云计算平台实战课件(完整版)
- 中医舌象舌诊PPT课件
评论
0/150
提交评论