2026届湖北省武汉新区第一学校数学高二上期末检测试题含解析_第1页
2026届湖北省武汉新区第一学校数学高二上期末检测试题含解析_第2页
2026届湖北省武汉新区第一学校数学高二上期末检测试题含解析_第3页
2026届湖北省武汉新区第一学校数学高二上期末检测试题含解析_第4页
2026届湖北省武汉新区第一学校数学高二上期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省武汉新区第一学校数学高二上期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列的公差为2,若成等比数列,则()A.72 B.90C.36 D.452.设函数是定义在上的函数的导函数,有,若,,则,,的大小关系是()A. B.C. D.3.已知空间向量,,且与互相垂直,则k的值是()A.1 B.C. D.4.双曲线:的渐近线与圆:在第一、二象限分别交于点、,若点满足(其中为坐标原点),则双曲线的离心率为()A. B.C. D.5.直线经过两个定点,,则直线倾斜角大小是()A. B.C. D.6.直线与曲线相切于点,则()A. B.C. D.7.一个动圆与定圆相外切,且与直线相切,则动圆圆心的轨迹方程为()A. B.C. D.8.下列求导错误的是()A. B.C. D.9.已知的展开式中,各项系数的和与其各项二项式系数的和之比为,则()A.4 B.5C.6 D.710.【2018江西抚州市高三八校联考】已知双曲线(,)与抛物线有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点,则双曲线的离心率为()A. B.C. D.11.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥012.设,,,则,,大小关系为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,则向量在坐标平面上的投影向量是__________14.若、是双曲线的左右焦点,过的直线与双曲线的左右两支分别交于,两点.若为等边三角形,则双曲线的离心率为________.15.已知p:≤0,q:4x+2x-m≤0,若p是q的充分条件,则实数m的取值范围是________16.若圆C:与圆D2的公共弦长为,则圆D的半径为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求二面角的余弦值18.(12分)如图,已知圆C与y轴相切于点,且被x轴正半轴分成的两段圆弧长之比为1∶2(1)求圆C的方程;(2)已知点,是否存在弦被点P平分?若存在,求直线的方程;若不存在,请说明理由19.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆的位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分20.(12分)已知等比数列的前项和为,,.数列的前项和为,且,(1)分别求数列和的通项公式;(2)若,为数列的前项和,是否存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列?若存在,求出所有满足条件的,,的值;若不存在,说明理由21.(12分)已知等差数列{an}的前n项和为Sn,数列{bn}满足:点(n,bn)在曲线y=上,a1=b4,___,数列{}的前n项和为Tn从①S4=20,②S3=2a3,③3a3﹣a5=b2这三个条件中任选一个,补充到上面问题的横线上并作答(1)求数列{an},{bn}的通项公式;(2)是否存在正整数k,使得Tk>,且bk>?若存在,求出满足题意的k值;若不存在,请说明理由22.(10分)如图所示,在直三棱柱中,,,(1)求三棱柱的表面积;(2)求异面直线与所成角的大小(结果用反三角函数表示)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意结合成等比数列,有即可得,进而得到、,即可求.【详解】由题意知:,,又成等比数列,∴,解之得,∴,则,∴,故选:B【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量1、由成等比,即;2、等差数列前n项和公式的应用.2、C【解析】设,求导分析的单调性,又,,,即可得出答案【详解】解:设,则,又因为,所以,所以在上单调递增,又,,,因为,所以,所以.故选:C3、D【解析】由=0可求解【详解】由题意,故选:D4、B【解析】由,得点为三角形的重心,可得,即可求解.【详解】如图:设双曲线的焦距为,与轴交于点,由题可知,则,由,得点为三角形的重心,可得,即,,即,解得.故选:B【点睛】本题主要考查了双曲线的简单几何性质,三角形的重心的向量表示,属于中档题.5、A【解析】由两点坐标求出斜率,再得倾斜角【详解】由已知直线的斜率为,所以倾斜角为故选:A6、A【解析】直线与曲线相切于点,可得求得的导数,可得,即可求得答案.【详解】直线与曲线相切于点将代入可得:解得:由,解得:.可得,根据在上,解得:故故选:A.【点睛】本题考查了根据切点求参数问题,解题关键是掌握函数切线的定义和导数的求法,考查了分析能力和计算能力,属于中档题.7、D【解析】根据点到直线的距离与点到点之间距离的关系化简即可.【详解】定圆的圆心,半径为2,设动圆圆心P点坐标为(x,y),动圆的半径为r,d为动圆圆心到直线的距离,即r,则根据两圆相外切及直线与圆相切的性质可得,所以,化简得:∴动圆圆心轨迹方程为故选:D8、B【解析】根据导数运算求得正确答案.【详解】、、运算正确.,B选项错误.故选:B9、C【解析】利用赋值法确定展开式中各项系数的和以及二项式系数的和,利用比值为,列出关于的方程,解方程.【详解】二项式的各项系数的和为,二项式的各项二项式系数的和为,因为各项系数的和与其各项二项式系数的和之比为,所以,.故选:C.10、C【解析】由题意可知,抛物线的焦点坐标为,准线方程为,由在抛物线的准线上,则,则,则焦点坐标为,所以,则,解得,双曲线的渐近线方程是,将代入渐近线的方程,即,则双曲线的离心率为,故选C.11、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.12、C【解析】由,可得,,故选C.考点:指数函数性质二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据投影向量的知识求得正确答案.【详解】空间向量在坐标平面上的投影向量是.故答案为:14、【解析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=a,结合双曲线离心率公式即可算出双曲线C的离心率.【详解】因为△ABF2为等边三角形,可知,A为双曲线上一点,,B为双曲线上一点,则,即,∴由,则,已知,在△F1AF2中应用余弦定理得:,得c2=7a2,则e2=7⇒e=故答案为:【点睛】方法点睛:求双曲线的离心率,常常不能经过条件直接得到a,c的值,这时可将或视为一个整体,把关系式转化为关于或的方程,从而得到离心率的值.15、m≥6【解析】分别求出p,q成立的等价条件,利用p是q的充分条件,转为当0<x≤1时,m大于等于的最大值,求出最值即可确定m的取值范围【详解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因为,要使p是q的充分条件,则当0<x≤1时,m大于等于的最大值,令,则在上单调递增,故当时取到最大值6,所以m≥6故答案为:m≥6【点睛】本题主要考查充分条件和必要条件的应用,考查函数的最值,考查转化的思想,属于基础题16、【解析】首先根据圆与圆的位置关系得到公共弦方程,再根据弦长求解即可.【详解】根据得公共弦方程为:.因为公共弦长为,所以直线过圆的圆心.所以,解得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】分析:(1)由四边形为矩形,可得,再由已知结合面面垂直的性质可得平面,进一步得到,再由,利用线面垂直的判定定理可得面,即可证得平面;(2)取的中点,连接,以为坐标原点,建立如图所示的空间直角坐标系,由题得,解得.进而求得平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值.详解:(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)设BC中点为,连接,,又面面,且面面,所以面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)知PB⊥平面PCD,故PB⊥,设,可得所以由题得,解得.所以设是平面的法向量,则,即,可取.设是平面的法向量,则,即,可取.则,所以二面角的余弦值为.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.18、(1).(2).【解析】(1)由已知得圆心C在直线上,设圆C与x轴的交点分别为E、F,则有,,圆心C的坐标为(2,1),由此求得圆C的标准方程;(2)假设存在弦被点P平分,有,由此求得直线AB的斜率可得其方程再检验,直线AB与圆C是否相交即可.小问1详解】解:因为圆C与y轴相切于点,所以圆心C在直线上,设圆C与x轴的交点分别为E、F,由圆C被x轴分成的两段弧长之比为2∶1,得,所以,圆心C的坐标为(2,1),所以圆C的方程为;【小问2详解】解:因为点,有,所以点P在圆C的内部,假设存在弦被点P平分,则,又,所以,所以直线AB的方程为,即,检验,圆心C到直线AB的距离为,所以直线AB与圆C相交,所以存在弦被点P平分,此时直线的方程为.19、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C的圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为点C到直线的距离,所以直线被圆C截得的弦长为20、(1),;(2)不存在,理由见解析.【解析】(1)利用数列为等比数列,将已知的等式利用首项和公比表示,得到一个方程组,求解即可得到首项和公比,结合等比数列的通项公式即可求出;将已知的等式变形,得到数列为等差数列,利用等差数列通项公式求出,再结合数列的第项与前项和之间的关系进行求解,即可得到;(2)先利用等比数列求和公式求出,从而得到的表达式,然后利用裂项相消求和法求出,假设存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列,利用等比中项、等差中项以及进行化简变形,得到假设不成立,故可得到答案【详解】(1)因为数列为等比数列,设首项为,公比为,由题意可知,所以,所以,由②可得,即,所以或2,因为,所以,所以,所以,由,可得,所以数列为等差数列,首项为,公差为1,故,则,当时,,当时,也适合上式,故(2)由,可得,所以,所以,假设存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列,则有,所以,则,即,因为,所以,即,所以,所以,则,所以,则,所以,即,所以,这与已知的,,互不相等矛盾,故不存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.21、(1)条件选择见解析;an=2n,bn=25﹣n.(2)不存在,理由见解析.【解析】(1)把点(n,bn)代入曲线y=可得到bn=25﹣n,进而求出a1,设等差数列{an}的公差为d,选①S4=20,利用等差数列的前n项和公式可求出d,从而得到an;若选②S3=2a3,利用等差数列的前n项和公式可求出d,从而得到an;若选③3a3﹣a5=b2,利用等差数列的通项公式公式可求出d,从而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂项相消法求出Tn=1﹣,不等式无解,即不存在正整数k,使得Tk>,且bk>【小问1详解】解:∵点(n,bn)在曲线y=上,∴=25﹣n,∴a1=b4=25﹣4=2,设等差数列{an}的公差为d,若选①S4=20,则S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若选②S3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论