四川省广元天立学校2026届高三数学第一学期期末经典试题含解析_第1页
四川省广元天立学校2026届高三数学第一学期期末经典试题含解析_第2页
四川省广元天立学校2026届高三数学第一学期期末经典试题含解析_第3页
四川省广元天立学校2026届高三数学第一学期期末经典试题含解析_第4页
四川省广元天立学校2026届高三数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广元天立学校2026届高三数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列中,若,则此数列中一定为0的是()A. B. C. D.2.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.403.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.4.在中,,,,点满足,则等于()A.10 B.9 C.8 D.75.已知变量,满足不等式组,则的最小值为()A. B. C. D.6.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A. B.40 C.16 D.7.若,则的值为()A. B. C. D.8.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A. B. C. D.19.若函数的图象过点,则它的一条对称轴方程可能是()A. B. C. D.10.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.11.已知向量,,且与的夹角为,则x=()A.-2 B.2 C.1 D.-112.已知集合A,B=,则A∩B=A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正方形边长为,空间中的动点满足,,则三棱锥体积的最大值是______.14.若双曲线的离心率为,则双曲线的渐近线方程为______.15.我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1丈=10尺).16.若函数在区间上恰有4个不同的零点,则正数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线:(为参数),曲线(为参数).(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.18.(12分)已知,且.(1)请给出的一组值,使得成立;(2)证明不等式恒成立.19.(12分)已知函数,.(1)当时,①求函数在点处的切线方程;②比较与的大小;(2)当时,若对时,,且有唯一零点,证明:.20.(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.21.(12分)2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:,,,,(单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.22.(10分)已知函数(为常数)(Ⅰ)当时,求的单调区间;(Ⅱ)若为增函数,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.2、D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=403、D【解析】

由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养4、D【解析】

利用已知条件,表示出向量,然后求解向量的数量积.【详解】在中,,,,点满足,可得则==【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.5、B【解析】

先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.6、D【解析】

如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,,故.故选:.【点睛】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.7、C【解析】

根据,再根据二项式的通项公式进行求解即可.【详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C【点睛】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力8、C【解析】试题分析:设,由题意,显然时不符合题意,故,则,可得:,当且仅当时取等号,故选C.考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.9、B【解析】

把已知点坐标代入求出,然后验证各选项.【详解】由题意,,或,,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,,即是对称轴.故选:B.【点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键.10、D【解析】

利用复数代数形式的乘除运算化简,再由实部为求得值.【详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.11、B【解析】

由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.12、A【解析】

先解A、B集合,再取交集。【详解】,所以B集合与A集合的交集为,故选A【点睛】一般地,把不等式组放在数轴中得出解集。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,设点,根据题中条件得出,进而可求出的最大值,由此能求出三棱锥体积的最大值.【详解】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,则,,,设点,空间中的动点满足,,所以,整理得,,当,时,取最大值,所以,三棱锥的体积为.因此,三棱锥体积的最大值为.故答案为:.【点睛】本题考查三棱锥体积的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14、【解析】

利用,得到的关系式,然后代入双曲线的渐近线方程即可求解.【详解】因为双曲线的离心率为,所以,即,因为双曲线的渐近线方程为,所以双曲线的渐近线方程为.故答案为:【点睛】本题考查双曲线的几何性质;考查运算求解能力;熟练掌握双曲线的几何性质是求解本题的关键;属于基础题.15、213892【解析】

根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.【详解】如图所示:正四棱锥P-ABCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱台ABCD-A'B'C'D',且上底边长为A'B'=6尺,所以,解得,所以该正四棱台的体积是,故答案为:21;3892.【点睛】本题考查了棱锥与棱台的结构特征与应用问题,也考查了棱台的体积计算问题,属于中档题.16、;【解析】

求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可.【详解】由,得,,,,∵,∴,解得.故答案为:.【点睛】本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上.由此可得的不等关系,从而得出结论,本题解法属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)将直线和曲线化为普通方程,联立直线和曲线,可得交点坐标,可得的值;(2)可得曲线的参数方程,利用点到直线的距离公式结合三角形的最值可得答案.【详解】解:(1)直线的普通方程为,的普通方程.联立方程组,解得与的交点为,,则.(2)曲线的参数方程为(为参数),故点的坐标为,从而点到直线的距离是,由此当时,取得最小值,且最小值为.【点睛】本题主要考查参数方程与普通方程的转化及参数方程的基本性质、点到直线的距离公式等,属于中档题.18、(1)(答案不唯一)(2)证明见解析【解析】

(1)找到一组符合条件的值即可;(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【详解】解析:(1)(答案不唯一)(2)证明:由题意可知,,因为,所以.所以,即.因为,所以,因为,所以,所以.【点睛】考查不等式的证明,考查不等式的性质的应用.19、(1)①见解析,②见解析;(2)见解析【解析】

(1)①把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;②令,利用导数研究函数的单调性,可得当时,;当时,;当时,.(2)由题意,,在上有唯一零点.利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到.由在恒成立,且有唯一解,可得,得,即.令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得.【详解】解:(1)①当时,,,,又,切线方程为,即;②令,则,在上单调递减.又,当时,,即;当时,,即;当时,,即.证明:(2)由题意,,而,令,解得.,,在上有唯一零点.当时,,在上单调递减,当,时,,在,上单调递增..在恒成立,且有唯一解,,即,消去,得,即.令,则,在上恒成立,在上单调递减,又,,.在上单调递增,.【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力与推理论证能力,属难题.20、(1);(2).【解析】

(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2).作出函数的图象,当直线与函数的图象有三个公共点时,方程有三个解,由图可得结果.【详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数的取值范围是.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.21、(1)3360元;(2)见解析【解析】

(1)根据频率分布直方图计算每个农户的平均损失;(2)根据频率分布直方图计算随机变量X的可能取值,再求X的分布列和数学期望值.【详解】(1)记每个农户的平均损失为元,则;(2)由频率分布直方图,可得损失超过1000元的农户共有(0.00009+0.00003+0.00003)×2000×50=15(户),损失超过8000元的农户共有0.00003×2000×50=3(户),随机抽取2户,则X的可能取值为0,1,2;计算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列为;X012P数学期望为E(X)=0×+1×+2×=.【点睛】本题考查了频率分布直方图与离散型随机变量的分布列与数学期望计算问题,属于中档题.22、(Ⅰ)单调递增区间为,;单调递减区间为;(Ⅱ).【解析】

(Ⅰ)对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论