2026届内蒙古包头市稀土高新区二中高一数学第一学期期末学业质量监测模拟试题含解析_第1页
2026届内蒙古包头市稀土高新区二中高一数学第一学期期末学业质量监测模拟试题含解析_第2页
2026届内蒙古包头市稀土高新区二中高一数学第一学期期末学业质量监测模拟试题含解析_第3页
2026届内蒙古包头市稀土高新区二中高一数学第一学期期末学业质量监测模拟试题含解析_第4页
2026届内蒙古包头市稀土高新区二中高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届内蒙古包头市稀土高新区二中高一数学第一学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数,在其定义域内既是奇函数又是增函数的是A. B.C. D.2.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则A. B.C. D.3.已知函数的部分图象如图所示,点,是该图象与轴的交点,过点作直线交该图象于两点,点是的图象的最高点在轴上的射影,则的值是A B.C.1 D.24.设是互不重合的平面,m,n是互不重合的直线,给出下面四个说法:①若,,则;②若,,则;③若,,则;④若,,,则.其中所有错误说法的序号是()A.①③ B.①④C.①③④ D.②③④5.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,6.已知,则()A. B.C. D.7.若关于的不等式的解集为,则函数在区间上的最小值为()A. B.C. D.8.在同一坐标系中,函数与大致图象是()A. B.C. D.9.若是第三象限角,且,则是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角10.已知集合,则=A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若的最小正周期为,则的最小正周期为______12.计算:______.13.在中,已知是延长线上一点,若,点为线段的中点,,则_________14.的值等于____________15.在中,,则等于______16.关于x的不等式在上恒成立,则实数m的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明;(3)当时,函数恒成立,求实数m的取值范围18.已知函数,其中,且.(1)求的值及的最小正周期;(2)当时,求函数的值域.19.已知定义域为的函数是奇函数(1)求实数,的值;(2)判断的单调性,并用单调性的定义证明;(3)当时,恒成立,求实数的取值范围20.已知.(1)化简;(2)若,求.21.已知函数,求:(1)的最小正周期及最大值;(2)若且,求的值;(3)若,在有两个不等的实数根,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由幂函数,指数函数与对数函数的性质可得【详解】解:根据题意,依次分析选项:对于A,,其定义域为R,在R上既是奇函数又是增函数,符合题意;对于B,,是对数函数,不是奇函数,不符合题意;对于C,,为指数函数,不为奇函数;对于D,,为反比例函数,其定义域为,在其定义域上不是增函数,不符合题意;故选A【点睛】本题考查函数的奇偶性与单调性,是基础题,掌握幂函数,指数函数与对数函数的性质是解题关键2、C【解析】利用甲、乙两名同学6次考试的成绩统计直接求解【详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,故选【点睛】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题3、B【解析】分析:由图象得到函数的周期,进而求得.又由条件得点D,E关于点B对称,可得,然后根据数量积的定义求解可得结果详解:由图象得,∴,∴又由图象可得点B为函数图象的对称中心,∴点D,E关于点B对称,∴,∴故选B点睛:本题巧妙地将三角函数的图象、性质和向量数量积的运算综合在一起,考查学生分析问题和解决问题的能力.解题的关键是读懂题意,通过图象求得参数;另外,根据函数图象的对称中心将向量进行化简,从而达到能求向量数量积的目的4、C【解析】①利用平面与平面的位置关系判断;②利用线面垂直的性质定理判断;③利用直线与直线的位置关系判断;④利用面面垂直的性质定理判断.【详解】①若,,则或相交,故错误;②若,,则可得,故正确;③若,,则,故错误;④若,,,当时,,故错误.故选:C5、B【解析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【详解】设这10个数据分别为:,根据题意,,所以,.故选:B.6、D【解析】先求出,再分子分母同除以余弦的平方,得到关于正切的关系式,代入求值.【详解】由得,,所以故选:D7、A【解析】由题意可知,关于的二次方程的两根分别为、,求出、的值,然后利用二次函数的基本性质可求得在区间上的最小值.【详解】由题意可知,关于的二次方程的两根分别为、,则,解得,则,故当时,函数取得最小值,即.故选:A.8、B【解析】根据题意,结合对数函数与指数函数的性质,即可得出结果.【详解】由指数函数与对数函数的单调性知:在上单调递增,在上单调递增,只有B满足.故选:B.9、D【解析】根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案【详解】是第三象限角,,则,即是第二象限或者第四象限角,,是第四象限角故选:D10、B【解析】分析:化简集合,根据补集的定义可得结果.详解:由已知,,故选B.点睛:本题主要一元二次不等式的解法以及集合的补集运算,意在考查运算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先由的最小正周期,求出的值,再由的最小正周期公式求的最小正周期.【详解】的最小正周期为,即,则所以的最小正周期为故答案为:12、【解析】利用指数幂和对数的运算性质可计算出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.13、【解析】通过利用向量的三角形法则,以及向量共线,代入化简即可得出【详解】解:∵()(),∴λ,∴故答案为【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题14、2【解析】利用诱导公式、降次公式进行化简求值.【详解】.故答案为:15、【解析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.16、【解析】对m进行讨论,变形,构造新函数求导,利用单调性求解最值可得实数m的取值范围;【详解】解:由上,;当时,显然也不成立;;可得设,其定义域为R;则,令,可得;当上时,;当上时,;当时;取得最大值为可得,;解得:;故答案为.【点睛】本题考查了导数在判断函数单调性和最值中的应用,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)单调递减;(3)【解析】(1)函数为奇函数,则,再用待定系数法即可求出;(2)作差法:任意的两个实数,证明出;(3)要使则试题解析:(1)所以(2)由(1)问可得在区间上是单调递减的证明:设任意的两个实数又,,在区间上是单调递减的;(3)由(2)知在区间上的最小值是要使则考点:1、待定系数法;2、函数的单调性;3、不等式恒成立问题.18、(1),(2)【解析】(1)利用两角和正弦公式和辅助角公式化简,结合条件可求函数解析式,由周期公式求周期;(2)利用不等式的性质和正弦函数的性质求函数的值域.【小问1详解】因为,故,解得因为,故.则的最小正周期为.【小问2详解】因为,所以,则,所以,故函数的值域为.19、(1),(2)在上单调递增,证明见解析(3)的取值范围为.【解析】(1)根据得到,根据计算得到,得到答案.(2)化简得到,,计算,得到是增函数.(3)化简得到,参数分离,求函数的最大值得到答案.【详解】(1)因为在定义域R上是奇函数.所以,即,所以.又由,即,所以,检验知,当,时,原函数是奇函数.(2)在上单调递增.证明:由(1)知,任取,则,因为函数在上是增函数,且,所以,又,所以,即,所以函数R上单调递增.(3)因为是奇函数,从而不等式等价于,因为在上是增函数,由上式推得,即对一切有恒成立,设,令,则有,,所以,所以,即的取值范围为.20、(Ⅰ);(Ⅱ).【解析】【试题分析】(1)利用诱导公式和同角三角函数关系,可将原函数化简为;(2)首先除以,即除以,然后分子分母同时除以,将所求式子转化为仅含有的表达式来求解.【试题解析】(Ⅰ)(Ⅱ)==21、(1)函数的最小正周期为,最大值为;(2);(3).【解析】(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,利用正弦函数的有界性可求得函数的最大值;(2)求出的取值范围,由可得出,可得出,进而可求得角的值;(3)令,由可求得,由可得出,问题转化为直线与函数在上的图象有两个交点,数形结合可得出关于实数的不等式,由此可解得实数的取值范围.【详解】(1),所以,函数的最小正周期为,最大值为;(2),则,,可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论