版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省烟台市栖霞市高二数学第一学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正数x,y满足,则取得最小值时()A. B.C.1 D.2.已知是椭圆右焦点,点在椭圆上,线段与圆相切于点,且,则椭圆的离心率等于()A. B.C. D.3.设、是向量,命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则4.已知等比数列的前n项和为,且,则()A.20 B.30C.40 D.505.数列满足,且,则的值为()A.2 B.1C. D.-16.函数的图象如图所示,则函数的图象可能是A. B.C. D.7.已知集合,则()A. B.C. D.8.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.9.下列命题错误的是()A,B.命题“”的否定是“”C.设,则“且”是“”的必要不充分条件D.设,则“”是“”的必要不充分条件10.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.22011.曲线的离心率为()A. B.C. D.12.已知随机变量服从正态分布,且,则()A.0.1 B.0.2C.0.3 D.0.4二、填空题:本题共4小题,每小题5分,共20分。13.在等差数列中,,那么等于______.14.某射箭运动员在一次射箭训练中射靶10次,命中环数如下:8,9,8,10,6,7,9,10,8,5,则命中环数的平均数为___________.15.已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,为两曲线的一个公共点,且(为坐标原点).若,则的取值范围是______16.已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为,则,若把它推广到空间长方体中,体对角线与平面,平面,平面所成的角分别为,则可以类比得到的结论为___________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)圆心在轴正半轴上、半径为2的圆与直线相交于两点且.(1)求圆的标准方程;(2)若直线,圆上仅有一个点到直线的距离为1,求直线的方程.18.(12分){}是公差为1的等差数列,.正项数列{}的前n项和为,且.(1)求数列{}和数列}的通项公式;(2)在和之间插入1个数,使,,成等差数列,在和之间插入2个数,,使,,,成等差数列,…,在和之间插入n个数,,…,,使,,,…,,成等差数列.①记,求{}的通项公式;②求的值.19.(12分)在所有棱长均为2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求证:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.20.(12分)已知函数,从下列两个条件中选择一个使得数列{an}成等比数列.条件1:数列{f(an)}是首项为4,公比为2的等比数列;条件2:数列{f(an)}是首项为4,公差为2的等差数列.(1)求数列{an}的通项公式;(2)求数列的前n项和.21.(12分)已知直线l经过直线,的交点M(1)若直线l与直线平行,求直线l的方程;(2)若直线l与x轴,y轴分别交于A,两点,且M为线段AB的中点,求的面积(其中O为坐标原点)22.(10分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据基本不等式进行求解即可.【详解】因为正数x,y,所以,当且仅当时取等号,即时,取等号,而,所以解得,故选:B2、A【解析】结合椭圆的定义、勾股定理列方程,化简求得,由此求得离心率.【详解】圆的圆心为,半径为.设左焦点为,连接,由于,所以,所以,所以,由于,所以,所以,,.故选:A3、C【解析】利用原命题与逆否命题之间的关系可得结论.【详解】由原命题与逆否命题之间的关系可知,命题“若,则”的逆否命题是“若,则”.故选:C.4、B【解析】利用等比数列的前n项和公式即可求解.【详解】设等比数列的首项为,公比为,则,由得,即,解得或(舍),且代入①得,则,所以.故选:B.5、D【解析】根据数列的递推关系式,求得数列的周期性,结合周期性得到,即可求解.【详解】解:由题意,数列满足,且,可得,可得数列是以三项为周期的周期数列,所以.故选:D.6、D【解析】原函数先减再增,再减再增,且位于增区间内,因此选D【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间7、D【解析】由集合的关系及交集运算,逐项判断即可得解.【详解】因为集合,,所以,,.故选:D.【点睛】本题考查了集合关系的判断及集合的交集运算,考查了运算求解能力,属于基础题.8、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C9、C【解析】根据题意,对四个选项一一进行分析,举出例子当时,,即可判断A选项;根据特称命题的否定为全称命题,可判断B选项;根据充分条件和必要条件的定义,即可判断CD选项.【详解】解:对于A,当时,,,故A正确;对于B,根据特称命题的否定为全称命题,得“”的否定是“”,故B正确;对于C,当且时,成立;当时,却不一定有且,如,因此“且”是“”的充分不必要条件,故C错误;对于D,因为当时,有可能等于0,当时,必有,所以“”是“”的必要不充分条件,故D正确.故选:C.10、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.11、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.12、A【解析】利用正态分布的对称性和概率的性质即可【详解】由,且则有:根据正态分布的对称性可知:故选:A二、填空题:本题共4小题,每小题5分,共20分。13、14【解析】根据等差数列的性质得到,求得,再由,即可求解.【详解】因为数列为等差数列,且,根据等差数列的性质,可得,解答,又由.故答案为:14.14、【解析】直接利用求平均数的公式即可求解.【详解】由已知得数据的平均数为,故答案为:.15、【解析】设出半焦距c,用表示出椭圆的长半轴长、双曲线的实半轴长,由可得为直角三角形,由此建立关系即可计算作答,【详解】设椭圆的长半轴长为,双曲线的实半轴长为,它们的半焦距为c,于是得,,由椭圆及双曲线的对称性知,不妨令焦点和在x轴上,点P在y轴右侧,由椭圆及双曲线定义得:,解得,,因,即,而O是线段的中点,因此有,则有,即,整理得:,从而有,即有,又,则有,即,解得,所以的取值范围是.故答案为:【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得值,根据离心率的定义求解离心率;②齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.16、【解析】先由线面角的定义得到,再计算的值即可得到结论【详解】在长方体中,连接,在长方体中,平面,所以对角线与平面所成的角为,对角线与平面所成的角为,对角线与平面所成的角为,显然,,,所以,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据圆的弦长公式进行求解即可;(2)根据平行线的性质,结合直线与圆的位置关系进行求解即可.小问1详解】因为圆的圆心在轴正半轴上、半径为2,所以设方程为:,圆心,设圆心到直线的距离为,因为,所以有,或舍去,所以圆的标准方程为;【小问2详解】由(1)可知:,圆的半径为,因为直线,所以设直线的方程为,因为圆上仅有一个点到直线的距离为1,所以直线与该圆相离,当两平行线间的距离为,于是有:,当时,圆心到直线的距离为:,符合题意;当时,圆心到直线的距离为::,不符合题意,此时直线的方程为.当两平行线间的距离为,于是有:,当时,圆心到直线的距离为:,不符合题意;当时,圆心到直线的距离为::,不符合题意,此时直线的方程为.故直线方程为或.18、(1),(2)①;②【解析】(1)利用等差数列的通项公式将展开化简,求得首项,可得;根据递推式,确定,再写出,两式相减可求得;(2)①根据等差数列的性质,采用倒序相加法求得结果;②根据数列的通项的特征,采用错位相减法求和即可.【小问1详解】设数列{}的公差为d,则d=1,由,即,可得,所以{}的通项公式为;由可知:当,得,当时,,两式相减得;,即,所以{}是以为首项,为公比的等比数列,故.【小问2详解】①,两式相加,得所以;②,,两式相减得:,故.19、(1)证明见解析;(2)证明见解析.【解析】(1)通过计算·=0来证得AB1⊥BC.(2)通过证明A1C⊥AC1、A1C⊥AC1来证得A1C⊥平面AB1C1.【详解】证明:(1)易知<>=120°,=+,则·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四边形AA1C1C为菱形,所以A1C⊥AC1.因为·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.20、(1)(2)【解析】(1)根据所给的条件分别计算后即可判断,再通过满足题意的求出通项;(2)由(1)可得,再通过错位相减法求和即可.【小问1详解】若选择条件1,则有,可得,不满足题意;若选择条件2,则有,可得,满足题意,故.【小问2详解】由(1)可得,所以………①因此有……….②①②可得,即,化简得.21、(1)(2)4【解析】(1)求出两直线的交点M的坐标,设直线l的方程为代入点M的坐标可得答案;(2)设,,因为为线段AB的中点,可得,由的面积为可得答案.【小问1详解】由,得,所以点M坐标为,因为,则设直线l的方程为,又l过点,代入得,故直线l方程为.【小问2详解】设,,因为为线段A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 42513.10-2025镍合金化学分析方法第10部分:痕量元素含量的测定辉光放电质谱法
- GB/T 4937.36-2025半导体器件机械和气候试验方法第36部分:稳态加速度
- 2026年天津机电职业技术学院单招职业适应性测试题库带答案详解
- 2026年宁夏工商职业技术学院单招职业倾向性考试题库及答案详解一套
- 2026年平凉职业技术学院单招职业适应性测试题库及答案详解一套
- 2026年运城师范高等专科学校单招职业适应性考试题库及完整答案详解1套
- 2026年云南现代职业技术学院单招职业技能考试题库及完整答案详解1套
- 2026年安徽国际商务职业学院单招职业倾向性考试题库含答案详解
- 2026年赣西科技职业学院单招职业适应性考试题库及答案详解一套
- 2026年云南商务职业学院单招职业倾向性考试题库及完整答案详解1套
- 高考复习专题之李白专练
- 对建筑工程施工转包违法分包等违法行为认定查处管理课件
- 中小学生励志主题班会课件《我的未来不是梦》
- 幼儿园户外体育游戏观察记录
- 红色国潮风舌尖上的美食餐饮策划书PPT模板
- 套筒窑工艺技术操作规程
- 某矿区采场浅孔爆破施工设计
- 果蝇遗传学实验
- 普夯施工方案
- 新饲料和新饲料添加剂审定申请表
- 你看起来好像很好吃教案
评论
0/150
提交评论