甘肃省兰州大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第1页
甘肃省兰州大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第2页
甘肃省兰州大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第3页
甘肃省兰州大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第4页
甘肃省兰州大学附中2026届高二数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州大学附中2026届高二数学第一学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.2.若(为虚数单位),则复数在复平面内的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.已知椭圆的左、右焦点分别为,过的直线与椭圆C相交P,Q两点,若,且,则椭圆C的离心率为()A. B.C. D.4.直线平分圆的周长,过点作圆的一条切线,切点为,则()A.5 B.C.3 D.5.设函数在R上可导,则()A. B.C. D.以上都不对6.已知△的顶点B,C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△的周长是()A. B.C.8 D.167.已知三棱锥,点分别为的中点,且,用表示,则等于()A. B.C. D.8.函数f(x)=xex的单调增区间为()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)9.已知抛物线,过抛物线的焦点作轴的垂线,与抛物线交于、两点,点的坐标为,且为直角三角形,则以直线为准线的抛物线的标准方程为()A. B.C. D.10.如图,已知多面体,其中是边长为4的等边三角形,四边形是矩形,,平面平面,则点到平面的距离是()A. B.C. D.11.如图在平行六面体中,与的交点记为.设,,,则下列向量中与相等的向量是()A. B.C. D.12.已知一组数据为:2,4,6,8,这4个数的方差为()A.4 B.5C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.设空间向量,且,则___________.14.点在以,为焦点的椭圆上运动,则的重心的轨迹方程是___________.15.已知数列的前项和,则该数列的首项__________,通项公式__________.16.若圆和圆的公共弦所在的直线方程为,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求下列函数的导数.(1);(2).18.(12分)已知抛物线上的点P(3,c)),到焦点F的距离为6(1)求抛物线C的方程;(2)过点Q(2,1)和焦点F作直线l交抛物线C于A,B两点,求△PAB的面积19.(12分)已知数列的前n项和,递增等比数列满足,且.(1)求数列,的通项公式;(2)求数列的前n项和为.20.(12分)人类社会正进入数字时代,网络成为了必不可少的工具,智能手机也给我们的生活带来了许多方便.但是这些方便、时尚的手机,却也让你的眼睛离健康越来越远.为了了解手机对视力的影响程度,某研究小组在经常使用手机的中学生中进行了随机调查,并对结果进行了换算,统计了中学生一个月中平均每天使用手机的时间x(小时)和视力损伤指数的数据如下表:平均每天使用手机的时间x(小时)1234567视力损伤指数y25812151923(1)根据表中数据,求y关于x的线性回归方程.(2)该小组研究得知:视力的下降值t与视力损伤指数y满足函数关系式,如果小明在一个月中平均每天使用9个小时手机,根据(1)中所建立的回归方程估计小明视力的下降值(结果保留一位小数).参考公式及数据:,..21.(12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积22.(10分)某企业计划新购买台设备,并将购买的设备分配给名年龄不同(视为技术水平不同)的技工加工一批模具,因技术水平不同而加工出的产品数量不同,故产生的经济效益也不同.若用变量表示不同技工的年龄,变量为相应的效益值(元),根据以往统计经验,他们的工作效益满足最小二乘法,且关于的线性回归方程为(1)试预测一名年龄为岁的技工使用该设备所产生的经济效益;(2)试根据的值判断使用该批设备的技工人员所产生的的效益与技工年龄的相关性强弱(,则认为与线性相关性很强;,则认为与线性相关性不强);(3)若这批设备有两道独立运行的生产工序,且两道工序出现故障的概率依次是,.若两道工序都没有出现故障,则生产成本不增加;若工序出现故障,则生产成本增加万元;若工序出现故障,则生产成本增加万元;若两道工序都出现故障,则生产成本增加万元.求这批设备增加的生产成本的期望参考数据:,参考公式:回归直线的斜率和截距的最小二乘估计分别为,,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【点睛】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题2、A【解析】根据复数运算法则求出z=a+bi形式,根据复数的几何意义即可求解.【详解】,z对应的点在第一象限.故选:A3、B【解析】设,由椭圆的定义及,结合勾股定理求参数m,进而由勾股定理构造椭圆参数的齐次方程求离心率.【详解】设,椭圆的焦距为,则,由,有,解得,所以,故得:故选:B.4、B【解析】根据圆的性质,结合圆的切线的性质进行求解即可.【详解】由,所以该圆的圆心为,半径为,因为直线平分圆的周长,所以圆心在直线上,故,因此,,所以有,所以,故选:B5、B【解析】根据极限的定义计算【详解】由题意故选:B6、D【解析】根据椭圆定义求解【详解】由椭圆定义得△的周长是,故选:D.7、D【解析】连接,利用,化简即可得到答案.【详解】连接,如下图.故选:D.8、D【解析】求出,令可得答案.【详解】由已知得,令,得,故函数f(x)=xex的单调增区间为(-1,+∞).故选:D.9、B【解析】设点位于第一象限,求得直线的方程,可得出点的坐标,由抛物线的对称性可得出,进而可得出直线的斜率为,利用斜率公式求得的值,由此可得出以直线为准线的抛物线的标准方程.【详解】设点位于第一象限,直线的方程为,联立,可得,所以,点.为等腰直角三角形,由抛物线的对称性可得出,则直线的斜率为,即,解得.因此,以直线为准线的抛物线的标准方程为.故选:B.【点睛】本题考查抛物线标准方程的求解,考查计算能力,属于中等题.10、C【解析】利用面面垂直性质结合已知寻找两两垂直的三条直线建立空间直角坐标系,用向量法可解.【详解】取的中点O,连接OB,过O在平面ACDE面内作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是边长为4的等边三角形,四边形ACDE是矩形,∴以O为原点,OA,OB,OF分别为x,y,z轴,建立如图所示空间直角坐标系则,,,设平面ABD的单位法向量,,由解得取,则∴点C到平面ABD的距离.故选:C11、B【解析】利用空间向量的加法和减法法则可得出关于、、的表达式.【详解】故选:B.12、B【解析】根据数据的平均数和方差的计算公式,准确计算,即可求解.【详解】由平均数的计算公式,可得,所以这4个数的方差为故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据,由求解.【详解】因为向量,且,所以,即,解得.故答案为:114、【解析】设出点和三角形的重心,利用重心坐标公式得到点和三角形的重心坐标的关系,,代入椭圆方程即可求得轨迹方程,再利用,,三点不共线得到.【详解】设,,由,得,即,,因为为的重心,所以,,即,,代入,得,即,因为,,三点不共线,所以,则的重心的轨迹方程是.故答案:.15、①.;②..【解析】空一:利用代入法直接进行求解即可;空二:利用之间的关系进行求解即可.【详解】空一:;空二:当时,,显然不适合上式,所以,故答案为:;16、【解析】由两圆公共弦方程,将两圆方程相减得到,结合已知列方程组求、,即可得答案.【详解】由题设,两圆方程相减可得:,即为公共弦,∴,可得,∴.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】利用导数的乘除法则,对题设函数求导即可.【小问1详解】.【小问2详解】18、(1)(2)【解析】(1)根据抛物线的焦半径公式求得,即可得到抛物线方程;(2)写出直线方程,联立抛物线方程,进而求得弦长|AB|,再求出点P到直线的距离,即可求得答案.【小问1详解】由抛物线的焦半径公式可知:,即得,故抛物线方程为:;【小问2详解】点Q(2,1)和焦点作直线l,则l方程为,即,联立抛物线方程:,整理得,设,则,故,点P(3,c)在抛物线上,则,点P到直线l的距离为,故△PAB的面积为.19、(1),(2)【解析】(1)先求,再由求出,设等比数列的公比为q,由条件可得,解出结合条件可得答案.(2)由(1)可得,利用错位相减法可求【小问1详解】,当时,,也满足上式,∴,则.设等比数列的公比为q,由得,解得或.因为是递增等比数列,所以,.【小问2详解】①①①②:∴20、(1)(2)0.3【解析】(1)由表格数据及参考公式即可求解;(2)由(1)中线性回归方程计算小明的视力损伤指数,再将代入视力的下降值t与视力损伤指数y满足的函数关系式即可求解.【小问1详解】解:由表格数据得:,,,,所以线性回归方程为;【小问2详解】解:小明的视力损伤指数,所以,估计小明视力的下降值为0.3.21、【解析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E-ACD的体积试题解析:(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD中点又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直如图,以A为坐标原点,,AD,AP的方向为x轴y轴z轴的正方向,||为单位长,建立空间直角坐标系A­xyz,则D,E,=.设B(m,0,0)(m>0),则C(m,,0),=(m,,0)设n1=(x,y,z)为平面ACE的法向量,则即可取n1=.又n2=(1,0,0)为平面DAE的法向量,由题设易知|cos〈n1,n2〉|=,即=,解得m=.因为E为PD的中点,所以三棱锥E­ACD的高为.三棱锥E­ACD的体积V=××××=.考点:二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定22、(1)元;(2)使用该批设备的技工人员所产生的的效益与技工年龄的相关性强;(3)0.13万元.【解析】(1)直接把代入线性回归方程即得解;(2)先求出,再代公式求出相关系数比较即得解;(3)设增加的生产成本为ξ(万元),则ξ的可能取值为0,2,3,5,求出对应的概率即得解.小问1详解】解:当时,.所以预测一名年龄为岁的技工使用该设备所产生的经济效益为元.【小问2详解】解:由题得,所以,所以.因为,所以与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论