版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江省衢州市数学高二上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中学生中抽取容量为50的样本,则应从高三年级抽取的学生数为()A.10 B.15C.20 D.302.已知双曲线C:的渐近线方程是,则m=()A.3 B.6C.9 D.3.已知两圆相交于两点和,两圆的圆心都在直线上,则的值为A. B.2C.3 D.04.已知斜率为1的直线与椭圆相交于A、B两点,O为坐标原点,AB的中点为P,若直线OP的斜率为,则椭圆C的离心率为()A. B.C. D.5.已知实数x,y满足,则的最大值为()A. B.C.2 D.16.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.7.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的体积为()A. B.C. D.8.已知向量,,且与互相垂直,则k的值是().A.1 B.C. D.9.设,,,则a,b,c的大小关系为()A. B.C. D.10.在空间直角坐标系中,若,,则()A. B.C. D.11.在中,,,,若该三角形有两个解,则范围是()A. B.C. D.12.已知角为第二象限角,,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,,则向量在向量上的投影向量的坐标是__________14.双曲线的离心率为____15.在中,,,的外接圆半径为,则边c的长为_____.16.设抛物线C:的焦点为F,准线l与x轴的交点为M,P是C上一点,若|PF|=5,则|PM|=__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在时有极值0.(1)求函数的解析式;(2)记,若函数有三个零点,求实数的取值范围.18.(12分)已知圆的方程为:.(1)求的值,使圆的周长最小;(2)过作直线,使与满足(1)中条件的圆相切,求的方程,并求切线段的长.19.(12分)某城镇为推进生态城镇建设,对城镇的生态环境、市容市貌等方面进行了全面治理,为了解城镇居民对治理情况的评价和建议,现随机抽取了200名居民进行问卷并评分(满分100分),将评分结果制成如下频率分布直方图,已知图中a,b,c成等比数列,且公比为2(1)求图中a,b,c的值,并估计评分的均值(各段分数用该段中点值作代表);(2)根据统计数据,在评分为“50~60”和“80~90”的居民中用分层抽样的方法抽取了6个居民.若从这6个居民中随机选择2个参加座谈,求所抽取的2个居民中至少有1个评分在“80~90”的概率20.(12分)已知圆过点且与圆外切于点,直线将圆分成弧长之比为的两段圆弧(1)求圆的标准方程;(2)直线的斜率21.(12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?22.(10分)已知圆C1圆心为坐标原点,且与直线相切(1)求圆C1的标准方程;(2)若直线l过点M(1,2),直线l被圆C1所截得的弦长为,求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据抽取比例乘以即可求解.【详解】由题意可得应从高三年级抽取的学生数为,故选:C.2、C【解析】根据双曲线的渐近线求得的值.【详解】依题意可知,双曲线的渐近线为,所以.故选:C3、C【解析】根据条件知:两圆的圆心的所在的直线与两圆的交点所在的直线垂直,以及两圆的交点的中点在两圆的圆心的所在的直线上,由此得到方程,得解.【详解】由已知两圆的交点与两圆的圆心的所在的直线垂直,,所以,又因为两圆的交点的中点在两圆的圆心所在的直线上,所以,解得:,所以,故选.【点睛】此题主要考查圆与圆的位置关系,解答此题的关键是需知两圆的圆心所在的直线与两圆的交点所在的直线垂直,并且两圆的交点的中点在两圆的圆心所在的直线上,此题属于基础题.4、B【解析】这是中点弦问题,注意斜率与椭圆a,b之间的关系.【详解】如图:依题意,假设斜率为1的直线方程为:,联立方程:,解得:,代入得,故P点坐标为,由题意,OP的斜率为,即,化简得:,,,;故选:B.5、A【解析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求出的最大值.【详解】作出可行域如图所示,由可知,此直线可用由直线平移得到,求的最大值,即直线的截距最大,当直线过直线的交点时取最大值,即故选:6、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B7、D【解析】设圆锥的半径为,母线长,根据已知条件求出、的值,可求得该圆锥的高,利用锥体的体积公式可求得结果.【详解】设圆锥的半径为,母线长,因为侧面展开图是一个半圆,则,即,又圆锥的表面积为,则,解得,,则圆锥的高,所以圆锥的体积,故选:D.8、D【解析】利用向量的数量积为0可求的值.【详解】因与互相垂直,故,故即,故.故选:D.9、A【解析】构造函数,求导判断其单调性即可【详解】令,,令得,,当时,,单调递增,,,,,,,故选:A10、B【解析】直接利用空间向量的坐标运算求解.【详解】解:因为,,所以.故选:B11、D【解析】根据三角形解得个数可直接构造不等式求得结果.【详解】三角形有两个解,,即.故选:D.12、C【解析】由同角三角函数关系可得,进而直接利用两角和的余弦展开求解即可.【详解】∵,是第二象限角,∴,∴.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据投影向量概念求解即可.【详解】因为空间向量,,所以,,所以向量在向量上投影向量为:,故答案为:.14、【解析】由题意得:考点:双曲线离心率15、【解析】由面积公式求得,结合外接圆半径,利用正弦定理得到边c的长.【详解】,从而,由正弦定理得:,解得:故答案为:16、【解析】根据抛物线的性质及抛物线方程可求坐标,进而得解.【详解】由抛物线的方程可得焦点,准线,由题意可得,设,有抛物线的性质可得:,解得x=4,代入抛物线的方程可得,所以,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出函数的导函数,由在时有极值0,则,两式联立可求常数a,b的值,从而得解析式;(2)利用导数研究函数的单调性、极值,根据函数图象的大致形状可求出参数的取值范围.【小问1详解】由可得,因为在时有极值0,所以,即,解得或,当时,,函数在R上单调递增,不满足在时有极值,故舍去.所以常数a,b的值分别为.所以.【小问2详解】由(1)可知,,令,解得,当或时,当时,,的递增区间是和,单调递减区间为,当有极大值,当有极小值,要使函数有三个零点,则须满足,解得.18、(1)(2)直线方程为或,切线段长度为4【解析】(1)先求圆的标准方程,由半径最小则周长最小;(2)由,则圆的方程为:,直线和圆相切则圆心到直线的距离等于半径,分直线与轴垂直和直线与轴不垂直两种情况进行讨论即可得解.进一步,利用圆的几何性质可求解切线的长度.【小问1详解】,配方得:,当时,圆的半径有最小值2,此时圆的周长最小.【小问2详解】由(1)得,,圆的方程为:.当直线与轴垂直时,,此时直线与圆相切,符合条件;当直线与轴不垂直时,设为,由直线与圆相切得:,解得,所以切线方程为,即.综上,直线方程为或.圆心与点的距离,则切线长度为.19、(1),,,均值为65.6(2)【解析】(1)根据a,b,c成等比数列且公比为2,得到a,b,c的关系,利用频率之和为1,求出a,b,c,估计评分的均值;(2)利用列举法得到基本事件,求出相应的概率.【小问1详解】由题意得,,,有,所以,即,解得,于是,评分在40~50,50~60,60~70,70~80,80~90,90~100的概率分别为0.15,0.20,0.30,0.20,0.10,0.05,则均分估计值为【小问2详解】评分在“50~60”和“80~90”分别有40人和20人则所抽取的6个居民中,评分在“80~90”一组有2人,记为A1,A2,评分在“50~60”一组4人,记为B1,B2,B3,B4从这6人中选取2人的所有基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共15个其中至少有1个评分在“80~90”的基本事件有9个则所求的概率,即抽取的2个居民中至少有1个评分在“80~90”的概率为20、(1);(2).【解析】(1)分析可知圆心在轴上,可设圆心,根据圆过点、可得出关于的方程,求出的值,可得出圆心的坐标,进而可求得圆的半径,即可得出圆的标准方程;(2)利用几何关系可求得圆心到直线的距离为,再利用点到直线的距离公式可求得的值.【小问1详解】解:圆的圆心为,记点、,直线即为轴,因为圆与圆外切于点,则圆心在轴上,设圆心,由可得,解得,则圆心,所以,圆的半径为,因此,圆的标准方程为.【小问2详解】解:由题意可知,直线截圆所得的弦在圆上对应的圆心角为,则圆心到直线的距离为,由点到直线的距离公式可得,解得.21、(1);(2),;(3)【解析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数试题解析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方图中x的值是0.0075.-------------3分(2)月平均用电量的众数是=230.-------------5分因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用电量的中位数是224.------------8分(3)月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户有0.0025×20×100=5户,-------------10分抽取比例==,所以月平均用电量在[220,240)的用户中应抽取25×=5户.--12分考点:频率分布直方图及分层抽样22、(1)(2)或【解析】(1)由圆心到直线的距离求得半径,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46782-2025金属及其他无机覆盖层多层镍电镀层中各镍镀层厚度和层间电位差同步测试方法(STEP测试)
- 2026年私厨套餐提供合同
- 2025年大通湖区法院公开招聘聘用制司法警务辅助人员备考题库及参考答案详解一套
- 2025年电大监督学题库及答案
- 2025年防城港市生态环境局招聘备考题库及一套参考答案详解
- 2025年湖北银行武汉财富管理人员社会招聘备考题库及完整答案详解1套
- 2025年绍兴市文化市场执法指导中心招聘编制外工作人员备考题库及参考答案详解1套
- 2025年河源市人民医院招聘合同制人员88人备考题库及参考答案详解一套
- 2025年医院医保部年终工作总结
- 2024年沈阳金融商贸经济技术开发区管理委员会运营公司招聘考试真题
- 高州市缅茄杯数学试卷
- 湖北省十堰市竹溪县2024年九年级化学第一学期期末达标检测试题含解析
- 医院购买电脑管理制度
- 编制竣工图合同范本
- 新22J01 工程做法图集
- 智慧树知到《艺术与审美(北京大学)》期末考试附答案
- 2024-2025学年上海市长宁区初三一模语文试卷(含答案)
- 全国医疗服务项目技术规范
- 人教版六年级数学下册全册教案
- 医院公共卫生事件应急处理预案
- 智慧校园云平台规划建设方案
评论
0/150
提交评论