版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省湖州市长兴县、德清县、安吉县三县2026届数学高一上期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则的大小关系为()A. B.C. D.2.已知点P(1,a)在角α的终边上,tan=-则实数a的值是()A.2 B.C.-2 D.-3.设P为函数图象上一点,O为坐标原点,则的最小值为()A.2 B.C. D.4.△ABC的内角、、的对边分别为、、,若,,,则()A. B.C. D.5.已知,则()A. B.C.5 D.-56.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知,若,则()A. B.C. D.8.函数与则函数所有零点的和为A.0 B.2C.4 D.89.函数的零点所在的区间()A. B.C. D.10.设是定义在实数集上的函数,且,若当时,,则有()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数部分图象如图所示,则此函数的解析式为______.12.设集合,,则_________13.某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,全校参加登山的人数占总人数的.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取人数为______.14.比较大小:________.15.函数y=1-sin2x-2sinx的值域是______16.将函数的图象向左平移个单位长度后得到的图象,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有三个条件:①;②且;③最小值为2且.从这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知二次函数满足_________,.(1)求的解析式;(2)设函数,求的值域.注:如果选择多个条件分别解答,按第一个解答计分.18.已知函数,其中,且.(1)若函数的图像过点,且函数只有一个零点,求函数的解析式;(2)在(1)的条件下,若,函数在区间上单调递增,求实数的取值范围.19.设直线l的方程为.(1)若l在两坐标轴上的截距相等,求直线l的方程(2)若l在两坐标轴上的截距互为相反数,求a.20.如图,游客从某旅游景区的景点A处下山至C处,第一种是从A沿直线步行到C,第二种是先从A沿索道乘缆车到B,然后从B沿直线步行到某旅客选择第二种方式下山,山路AC长为1260m,从B处步行下山到C处,,经测量,,,求索道AB的长21.在①函数为奇函数;②当时,;③是函数的一个零点这三个条件中任选一个,补充在下面问题中,并解答,已知函数,的图象相邻两条对称轴间的距离为,______.(1)求函数的解析式;(2)求函数在上的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题,,,所以的大小关系为.故选A.点晴:本题考查的是对数式的大小比较.解决本题的关键是利用对数函数的单调性比较大小,当对数函数的底数大于0小于1时,对数函数是单调递减的,当底数大于1时,对数函数是单调递增的;另外由于对数函数过点(1,0),所以还经常借助特殊值0,1,2等比较大小.2、C【解析】利用两角和的正切公式得到关于tanα的值,进而结合正切函数的定义求得a的值.【详解】∵,∴tanα=-2,∵点P(1,a)在角α的终边上,∴tanα==a,∴a=-2.故选:C.3、D【解析】根据已知条件,结合两点之间的距离公式,以及基本不等式的公式,即可求解【详解】为函数的图象上一点,可设,,当且仅当,即时,等号成立故的最小值为故选:4、C【解析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值.【详解】解:∵,,,∴由余弦定理可得,求得:c=1.∴∴.故选:C.【点睛】本题主要考查了余弦定理在解三角形中应用,属于基础题.5、C【解析】令,代入直接计算即可.【详解】令,即,则,故选:C.6、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B7、C【解析】设,求出,再由求出.【详解】设,因为所以,又,所以,所以.故选:C.8、C【解析】分析:分别作与图像,根据图像以及对称轴确定零点以及零点的和.详解:分别作与图像,如图,则所有零点的和为,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等9、B【解析】,,零点定理知,的零点在区间上所以选项是正确的10、B【解析】由f(2-x)=f(x)可知函数f(x)的图象关于x=1对称,所以,,又当x≥1时,f(x)=lnx单调递增,所以,故选B二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】由周期公式可得,代入点解三角方程可得值,进而可得解析式.【详解】由题意,周期,解得,所以函数,又图象过点,所以,得,又,所以,故函数的解析式为.故答案为:.【点睛】本题考查三角函数解析式的求解,涉及系数的意义,属于基础题.12、【解析】根据集合的交集的概念得到.故答案为13、【解析】由题意求得样本中抽取的高三的人数为人进而求得样本中高三年级参加登山的人,即可求解.【详解】由题意,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,所以样本中抽取的高三的人数为人,又因为全校参加登山的人数占总人数的,所以样本中高三年级参加登山的人数为,所以样本中高三年级参加跑步的人数为人.故答案为:.14、<【解析】利用诱导公式,将角转化至同一单调区间,根据单调性,比较大小.【详解】,,又在内单调递增,由所以,即<.故答案为:<.【点睛】本题考查了诱导公式,利用单调性比较正切值的大小,属于基础题.15、[-2,2]【解析】利用正弦函数的值域,二次函数的性质,求得函数f(x)的值域,属于基础题【详解】∵sinx∈[-1,1],∴函数y=1-sin2x-2sinx=-(sinx+1)2+2,故当sinx=1时,函数f(x)取得最小值为-4+2=-2,当sinx=-1时,函数f(x)取得最大值为2,故函数的值域为[-2,2],故答案为[-2,2]【点睛】本题主要考查正弦函数的值域,二次函数的性质,属于基础题16、0【解析】根据题意,可知将函数的图象向右平移个单位长度后得到,由函数图象的平移得出的解析式,即可得出的结果.【详解】解:由题意可知,将函数的图象向右平移个单位长度后得到,则,所以.故答案为:0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)若选择①,设代入,根据恒等式的思想可求得,得到的解析式;若选择②,设由,得,由,得出二次函数的对称轴即,再代入,解之可得的解析式;若选择③,设由,得,又恒成立,又,得出二次函数的对称轴解之即可;(2)由(1)知,根据二次函数的对称轴分析出上的单调性,可求得的值域.【详解】解:(1)若选择①,设则又因为即解得,又,所以解得,所以的解析式为;若选择②,设由,得,又,所以二次函数的对称轴即,又,所以解得所以的解析式为;若选择③,设由,得,又恒成立,又,所以二次函数的对称轴即,且解得所以的解析式为;(2)由(1)知,所以,因为对称轴所以在上单调递减,在上单调递增,故在上的值域为.【点睛】方法点睛:求函数解析式的方法:一.换元法:已知复合函数的解析式,求原函数的解析式,把看成一个整体t,进行换元,从而求出的方法,注意所换元的定义域的变化.二.配凑法:使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三.待定系数法:己知函数解析式的类型,可设其解析式的形式,根据己知条件建立关于待定系数的方程,从而求出函数解析式的方法.四.消去法(方程组法):方程组法求解析式的关键是根据己知方程中式子的特点,构造另一个方程.五.特殊值法:根据抽象函数的解析式的特征,进行对变量赋特殊值.18、(1)或(2)【解析】(1)因为,根据函数的图像过点,且函数只有一个零点,联立方程即可求得答案;(2)因为,由(1)可知:,可得,根据函数在区间上单调递增,即可求得实数的取值范围.【详解】(1)根据函数的图像过点,且函数只有一个零点可得,整理可得,消去得,解得或当时,,当时,,综上所述,函数的解析式为:或(2)当,由(1)可知:要使函数在区间上单调递增则须满足解得,实数的取值范围为.【点睛】本题考查了求解二次函数解析式和已知复合函数单调区间求参数范围.掌握复合函数单调性同增异减是解题关键,考查了分析能力和计算能力,属于中等题.19、(1)3x+y=0或x+y+2=0.(2)a=2或a=-2【解析】(1)直线在两坐标轴上的截距相等,有两种情况:截距为0和截距不为0,分别求出两种情况下的a的值,即得直线l的方程;(2)直线在两坐标轴上的截距互为相反数,由(1)可知有,解方程可得a。【详解】(1)当直线过原点时,该直线在x轴和y轴上截距为零,∴a=2,方程即为,当直线不经过原点时,截距存在且均不为0.∴,即a+1=1.∴a=0,方程即为x+y+2=0.综上,直线l的方程为3x+y=0或x+y+2=0.(2)由,得a-2=0或a+1=-1,∴a=2或a=-2.【点睛】第一个问中,直线在两坐标轴上的截距相等,注意不要忽略截距为0的情况。20、索道AB的长为1040m【解析】利用两角和差的正弦公式求出,结合正弦定理求AB即可【详解】解:在中,,,,,则,由正弦定理得得,则索道AB的长为1040m【点睛】本题主要考查三角函数的应用问题,根据两角和差的正弦公式以及正弦定理进行求解是解决本题的关键21、(1)选条件①②③任一个,均有;(2)选条件①②③任一个,函数在上的单调递增区间均为,.【解析】(1)由相邻两条对称轴间的距离为,得到;再选择一个条件求解出;(2)由(1)解得的函数,根据复合函数的单调性得到单调区间.【详解】解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年高胆固醇血症管理共识解读
- 餐饮企业厨房安全卫生管理培训教材
- 未来五年石斑鱼行业直播电商战略分析研究报告
- 未来五年信息技术企业ESG实践与创新战略分析研究报告
- 未来五年铁路调度服务企业制定与实施新质生产力战略分析研究报告
- 未来五年互联网电子竞技服务企业数字化转型与智慧升级战略分析研究报告
- 环保项目立项申报材料范例
- 未来五年互联网生产监测感知平台企业ESG实践与创新战略分析研究报告
- 儿童体能锻炼计划详解
- 基于议题式教学的课堂改革心得
- 2025年期货从业资格考试题库及完整答案(夺冠)
- 2025年医疗器械监督管理条例培训试题及参考答案
- 2025江苏苏州市昆山开发区招聘编外辅助人员29人(公共基础知识)综合能力测试题附答案解析
- 2025广西柳州城市职业学院人才招聘28人(公共基础知识)测试题附答案解析
- 22064,22877,23041,11041,59969《管理学基础》国家开放大学期末考试题库
- 加盟连锁经营政策分析与实施方案
- 电缆路径检测协议书
- 《烹饪工艺学》期末考试复习题库(附答案)
- 片区供热管网连通工程可行性研究报告
- 课件《法律在我身边》
- 2025年文职仓库保管员考试题及答案
评论
0/150
提交评论