四川省仁寿县铧强中学2026届数学高一上期末教学质量检测模拟试题含解析_第1页
四川省仁寿县铧强中学2026届数学高一上期末教学质量检测模拟试题含解析_第2页
四川省仁寿县铧强中学2026届数学高一上期末教学质量检测模拟试题含解析_第3页
四川省仁寿县铧强中学2026届数学高一上期末教学质量检测模拟试题含解析_第4页
四川省仁寿县铧强中学2026届数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省仁寿县铧强中学2026届数学高一上期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为()A. B.C. D.2.一个几何体的三视图如图所示,则几何体的体积是()A. B.C. D.23.已知函数(其中)的最小正周期为,则()A. B.C.1 D.4.农业农村部于2021年2月3日发布信息:全国按照主动预防、内外结合、分类施策、有效处置的总体要求,全面排查蝗灾隐患.为了做好蝗虫防控工作,完善应急预案演练,专家假设蝗虫的日增长率为6%,最初有只,则大约经过()天能达到最初的1200倍.(参考数据:,,,)A.122 B.124C.130 D.1365.设,其中、是正实数,且,,则与的大小关系是()A. B.C. D.6.在梯形中,,,是边上的点,且.若记,,则()A. B.C. D.7.某几何体的三视图如图所示,则该几何的体积为A.16+8 B.8+8C.16+16 D.8+168.在正内有一点,满足等式,,则()A. B.C. D.9.已知集合A={x∈N|1<x<log2k},集合A中至少有2个元素,则()A.k≥4 B.k>4C.k≥8 D.k>810.若函数f(x)=|x|+x3,则f(lg2)++f(lg5)+=()A.2 B.4C.6 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____12.若函数在上单调递减,则实数a的取值范围为___________.13.已知直三棱柱的个顶点都在球的球面上,若,,,,则球的直径为________14.已知定义在上的函数,满足不等式,则的取值范围是______15.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______16.已知若,则().三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值18.已知,且,(1)求,的值;(2),求的值19.某城市2021年12月8日的空气质量指数(AirQualityInex,简称AQI)与时间(单位:小时)的关系满足下图连续曲线,并测得当天AQI的最大值为103.当时,曲线是二次函数图象的一部分;当时,曲线是函数(且)图象的一部分,根据规定,空气质量指数AQI的值大于或等于100时,空气就属于污染状态(1)求函数的解析式;(2)该城市2021年12月8日这一天哪个时间段空气属于污染状态?并说明理由20.已知幂函数的图象经过点.(1)求实数a的值;(2)用定义法证明在区间上是减函数.21.已知函数是定义在上的奇函数,且时,.(1)求函数的解析式;(2)若任意恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可.【详解】过点作,垂足为则由已知可得四边形为矩形,为等腰直角三角形,根据直观图画出原图如下:可得原图形为直角梯形,,且,可得原四边形的面积为故选:B.2、B【解析】由三视图可知此几何体是由一个长为2,宽为,高为的长方体过三个顶点切去一角的空间多面体,如图所示,则其体积为.故正确答案选B.考点:1.三视图;2.简单组合体体积.3、D【解析】根据正弦型函数的最小正周期求ω,从而可求的值.【详解】由题可知,,∴.故选:D.4、A【解析】设经过天后蝗虫数量达到原来的倍,列出方程,结合对数的运算性质即可求解【详解】由题意可知,蝗虫最初有只且日增长率为6%;设经过n天后蝗虫数量达到原来的1200倍,则,∴,∴,∵,∴大约经过122天能达到最初的1200倍.故选:A.5、B【解析】利用基本不等式结合二次函数的基本性质可得出与的大小关系.【详解】因为、是正实数,且,则,,因此,.故选:B.6、A【解析】作出图形,由向量加法的三角形法则得出可得出答案.【详解】如下图所示:由题意可得,由向量加法的三角形法则可得.故选:A.【点睛】本题考查利用基底来表示向量,涉及平面向量加法的三角形法则的应用,考查数形结合思想的应用,属于基础题.7、A【解析】由已知中的三视图可得该几何体是一个半圆柱和正方体的组合体,半圆柱底面半径为2,故半圆柱的底面积半圆柱的高故半圆柱的体积为,长方体的长宽高分别为故长方体的体积为故该几何体的体积为,选A考点:三视图,几何体的体积8、A【解析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.9、D【解析】首先确定集合A,由此得到log2k>3,即可求k的取值范围.【详解】∵集合A={x∈N|1<x<log2k},集合A中至少有2个元素,∴A={2,3},则log2k>3,可得k>8.故选:D.10、A【解析】利用f(x)解析式的特征和对数的计算法则运算即可﹒【详解】由于f(x)=|x|+x3,得f(-x)+f(x)=2|x|,又lg=-lg2,lg=-lg5∴原式=2|lg2|+2|lg5|=2(lg2+lg5)=2故选:A﹒二、填空题:本大题共6小题,每小题5分,共30分。11、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.12、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:13、【解析】根据题设条件可以判断球心的位置,进而求解【详解】因为三棱柱的个顶点都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,侧棱与底面垂直,的外心是斜边的中点,上下底面的中心连线垂直底面,其中点是球心,即侧面,经过球球心,球的直径是侧面的对角线的长,因为,,,所以球的半径为:故答案为:14、【解析】观察函数的解析式,推断函数的性质,借助函数性质解不等式【详解】令,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为【点睛】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题15、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.16、【解析】利用平面向量平行的坐标表示进行求解.【详解】因为,所以,即;故答案:.【点睛】本题主要考查平面向量平行的坐标表示,两向量平行坐标分量对应成比例,侧重考查数学运算的核心素养.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即可求出的取值范围;(3)利用偶函数的性质,即可求出【详解】(1)因为函数图象过点,所以,解得.则,因为,所以,所以函数的值域为.(2)方程有实根,即,有实根,构造函数,则,因为函数在R上单调递减,而在(0,)上单调递增,所以复合函数是R上单调递减函数所以在上,最小值,最大值为,即,所以当时,方程有实根(3),是R上的偶函数,则满足,即恒成立,则恒成立,则恒成立,即恒成立,故,则恒成立,所以.【点睛】本题考查了函数的奇偶性的应用,及对数函数的性质,属于中档题18、(1);(2)【解析】(1)首先可通过二倍角公式以及将转化为,然后带入即可计算出的值,再然后通过以及即可计算出的值;(2)可将转化为然后利用两角差的正弦公式即可得出结果【详解】⑴,因为,,所以;⑵因为,,,所以,【点睛】本题考查三角函数的相关性质,主要考查三角恒等变换,考查的公式有、、,在使用计算的时候一定要注意角的取值范围19、(1)(2)当天在这个时间段,该城市的空气处于污染状态,理由见解析【解析】(1)先用待定系数法求得时的解析式,再算得当时的函数值,再由待定系数法可得时的解析式;(2)根据,分段解不等式即可.【小问1详解】当时,,将代入得,∵时,,∴由的图象是一条连续曲线可知,点在的图象上,当时,设,将代入得,∴【小问2详解】由题意可知,空气属于污染状态时,∴或,∴或,∴,∴当天在这个时间段,该城市的空气处于污染状态20、(1);(2)证明见解析.【解析】(1)将点代入函数解析式运算即可得解;(2)利用函数单调性的定义,任取,且,通过作差证明即可得证.【详解】(1)的图象经过点,,即,解得,(2)证明:由(1)得任取,且,则,,,且,,即,在区间内是减函数.21、(1);(2).【解析】(1)由奇函数的性质可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论