浙江绍兴市2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
浙江绍兴市2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
浙江绍兴市2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
浙江绍兴市2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
浙江绍兴市2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江绍兴市2026届高一数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的部分图象如图所示,下列结论正确的个数是()①②将的图象向右平移1个单位,得到函数的图象③的图象关于直线对称④若,则A.0个 B.1个C.2个 D.3个2.下列各式中与相等的是A. B.C. D.3.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是()A.(4,+∞) B.(0,4)C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞)4.定义在R上的函数满足,且当时,,,若任给,存在,使得,则实数a的取值范围为().A. B.C. D.5.一半径为2m的水轮,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3秒转一圈,且当水轮上点P从水中浮现时(图中点)开始计算时间.如图所示,建立直角坐标系,将点P距离水面的高度h(单位:m)表示为时间t(单位:s)的函数,记,则()A.0 B.1C.3 D.46.设函数的值域为R,则实数a的取值范围是()A.(-∞,1] B.[1,+∞)C.(-∞,5] D.[5,+∞)7.已知集合,集合,则图中阴影部分表示的集合为()A. B.C. D.8.已知实数满足方程,则的最小值和最大值分别为()A.-9,1 B.-10,1C.-9,2 D.-10,29.已知,若不等式恒成立,则的最大值为()A.13 B.14C.15 D.1610.简谐运动可用函数表示,则这个简谐运动的初相为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,g(x)=x+t,设,若当x为正整数时,恒有h(5)≤h(x),则实数t的取值范围是_____________.12.函数f(x),若f(a)=4,则a=_____13.设奇函数在上是增函数,且,若对所有的及任意的都满足,则的取值范围是__________14.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从__________年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:,)15.设x、y满足约束条件,则的最小值是________.16.已知函数若方程恰有三个实数根,则实数的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-1.(1)求f(3)+f(-1);(2)求f(x)的解析式.18.已知二次函数满足,且.(1)求函数在区间上的值域;(2)当时,函数与的图像没有公共点,求实数的取值范围.19.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a的取值范围.20.某种放射性元素的原子数随时间的变化规律是,其中是正的常数,为自然对数的底数.(1)判断函数是增函数还是减函数;(2)把表示成原子数的函数.21.已知是偶函数,是奇函数.(1)求,的值;(2)判断的单调性;(不需要证明)(3)若不等式在上恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由函数的图象的顶点坐标求出A,由周期求出,可判断①,由点的坐标代入求得,可得函数的解析式,再根据函数图象的变换规律可判断②,将代入解析式中验证,可判断③;根据三角函数的图象和性质可判断④,即可得到答案【详解】由函数图象可知:,函数的最小正周期为,故,将代入解析式中:,得:由于,故,故①错误;由以上分析可知,将的图象向右平移1个单位,得到函数的图象,故②正确;将代入得,故③错误;由于函数的最小正周期为8,而,故不会出现一个取到最大或最小值另一个取到最小或最大的情况,故,故④正确,故选:C2、A【解析】利用二倍角公式及平方关系可得,结合三角函数的符号即可得到结果.【详解】,又2弧度在第二象限,故sin2>0,cos2<0,∴=故选A【点睛】本题考查三角函数的化简问题,涉及到二倍角公式,平方关系,三角函数值的符号,考查计算能力.3、A【解析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】令,∵方程的一根小于,另一根大于,∴,即,解得,即实数的取值范围是,故选A.【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查4、D【解析】求出在,上的值域,利用的性质得出在,上的值域,再求出在,上的值域,根据题意得出两值域的包含关系,从而解出的范围【详解】解:当时,,可得在,上单调递减,在上单调递增,在,上的值域为,,在上的值域为,,在上的值域为,,,,在上的值域为,,当时,为增函数,在,上的值域为,,,解得;当时,为减函数,在,上的值域为,,,解得;当时,为常数函数,值域为,不符合题意;综上,的范围是或故选:【点睛】本题考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则值域是值域的子集5、C【解析】根据题意设h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,写出函数解析式,计算f(t)+f(t+1)+f(t+2)的值【详解】根据题意,设h=f(t)=Asin(ωt+φ)+k,(φ<0),则A=2,k=1,因为T=3,所以ω,所以h=2sin(t+φ)+1,又因为t=0时,h=0,所以0=2sinφ+1,所以sinφ,又因为φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故选:C6、B【解析】分段函数中,根据对数函数分支y=log2x的值域在(1,+∞),而函数的值域为R,可知二次函数y=-x2+a的最大值大于等于1,即可求得a的范围【详解】x>2时,y=log2x>1∴要使函数的值域为R,则y=-x2+a在x≤2上的最大值a大于等于1即,a≥1故选:B【点睛】本题考查了对数函数的值域,由函数的值域及所得对数函数的值域,判断二次函数的的值域范围进而求参数范围7、B【解析】由阴影部分表示的集合为,然后根据集合交集的概念即可求解.【详解】因为阴影部分表示的集合为由于.故选:B.8、A【解析】即为y-2x可看作是直线y=2x+b在y轴上的截距,当直线y=2x+b与圆相切时,纵截距b取得最大值或最小值,此时,解得b=-9或1.所以y-2x的最大值为1,最小值为-9故选A.9、D【解析】用分离参数法转化为恒成立,只需,再利用基本不等式求出的最小值即可.【详解】因为,所以,所以恒成立,只需因为,所以,当且仅当时,即时取等号.所以.即的最大值为16.故选:D10、B【解析】根据初相定义直接可得.【详解】由初相定义可知,当时的相位称为初相,所以,函数的初相为.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、[-5,-3]【解析】作出的图象,如图,设与的交点横坐标为,则在时,总有,所以当时,有,,由,得;当当时,有,,由,得,综上,,故答案为:.12、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.13、【解析】由题意得,又因为在上是增函数,所以当,任意的时,,转化为在时恒成立,即在时恒成立,即可求解.【详解】由题意,得,又因为在上是增函数,所以当时,有,所以在时恒成立,即在时恒成立,转化为在时恒成立,所以或或解得:或或,即实数的取值范围是【点睛】本题考查函数的恒成立问题的求解,求解的关键是把不等式的恒成立问题进行等价转化,考查分析问题和解答问题的能力,属于中档试题.14、2021【解析】设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×(两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为202115、-6【解析】先根据约束条件画出可行域,再利用的几何意义求最值,只需求出直线过可行域内的点时,从而得到的最小值即可【详解】解:由得,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线,由图象可知当直线,过点A时,直线截距最大,此时z最小,由得,即,代入目标函数,得∴目标函数的最小值是﹣6故答案为:【点睛】本题考查简单线性规划问题,属中档题16、【解析】令f(t)=2,解出t,则f(x)=t,讨论k的符号,根据f(x)的函数图象得出t的范围即可【详解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)当k=0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,即f(f(x))﹣2=0无解,不符合题意;(2)当k>0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,f(x)无解,即f(f(x))﹣2=0无解,不符合题意;(3)当k<0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k综上,k的取值范围是(﹣1,]故答案为(﹣1,]【点睛】本题考查了函数零点个数与函数图象的关系,数形结合思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)6(2)f(x)=【解析】(1)可以直接求,利用为奇函数,求得,所以只需要求出就可以了,再求出;(2)由于已知的解析式,所以只需要求出时的解析式即可,由奇函数的性质求出解析式试题解析:(1)∵f(x)是奇函数,∴f(3)+f(-1)=f(3)-f(1)=23-1-2+1=6.(2)设x<0,则-x>0,∴f(-x)=2-x-1,∵f(x)为奇函数,∴f(x)=-f(-x)=-2-x+1,∴f(x)=18、(1)(2)【解析】(1)通过已知得到方程组,解方程组即得二次函数的解析式,再利用二次函数的图象求函数的值域得解;(2)求出,等价于,求出二次函数最小值即得解.【小问1详解】解:设、∴,∴,∴,,又,∴,∴.∵对称轴为直线,,,,∴函数的值域.【小问2详解】解:由(1)可得:∵直线与函数的图像没有公共点∴,当时,∴,∴.19、(1)..(2)【解析】(1)由求得,作出函数图象可知的范围;(2)由函数图象可知区间所属范围,列不等式示得结论.【详解】(1)因为,所以.函数大致图象如图所示令,得.故有3个不同的零点.即方程有3个不同的实根.由图可知.(2)由图象可知,函数在区间和上分别单调递增.因为,且函数在区间上为增函数,所以可得,解得.所以实数a的取值范围为.【点睛】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题.20、(1)减函数;(2)(其中).【解析】(1)即得是关于的减函数;(2)利用指数式与对数式的互化,可以把t表示为原子数N的函数试题解析:(1)由已知可得因为是正常数,,所以,即,又是正常数,所以是关于的减函数(2)因为,所以,所以,即(其中).点睛:本题利用指数函数的单调性即可容易得出函数的单调性,利用指数与对数的互

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论