2026届襄樊市重点中学高二数学第一学期期末经典试题含解析_第1页
2026届襄樊市重点中学高二数学第一学期期末经典试题含解析_第2页
2026届襄樊市重点中学高二数学第一学期期末经典试题含解析_第3页
2026届襄樊市重点中学高二数学第一学期期末经典试题含解析_第4页
2026届襄樊市重点中学高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届襄樊市重点中学高二数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四面体中,空间的一点满足,若共面,则()A. B.C. D.2.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.23.已知关于的不等式的解集是,则的值是()A B.5C. D.74.已知定义在上的函数满足下列三个条件:①当时,;②的图象关于轴对称;③,都有.则、、的大小关系是()A. B.C. D.5.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A. B.C. D.6.设函数若函数有两个零点,则实数m的取值范围是()A. B.C. D.7.在平面区域内随机投入一点P,则点P的坐标满足不等式的概率是()A. B.C. D.8.已知是双曲线的左焦点,圆与双曲线在第一象限的交点为,若的中点在双曲线的渐近线上,则此双曲线的离心率是()A. B.2C. D.9.已知椭圆的中心为,一个焦点为,在上,若是正三角形,则的离心率为()A. B.C. D.10.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则11.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则12.若关于一元二次不等式的解集为,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某人实施一项投资计划,从2021年起,每年1月1日,把上一年工资的10%投资某个项目.已知2020年他的工资是10万元,预计未来十年每年工资都会逐年增加1万元;若投资年收益是10%,一年结算一次,当年的投资收益自动转入下一年的投资本金,若2031年1月1日结束投资计划,则他可以一次性取出的所有投资以及收益应有__________万元.(参考数据:,,)14.已知曲线表示焦点在轴上的双曲线,则符合条件的的一个整数值为______.15.已知双曲线的渐近线方程为,,分别为C的左,右焦点,若动点P在C的右支上,则的最小值是______16.在2021件产品中有10件次品,任意抽取3件,则抽到次品个数的数学期望的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)茶树根据其茶叶产量可分为优质茶树和非优质茶树,某茶叶种植研究小组选取了甲,乙两块试验田来检验某种茶树在不同的环境条件下的生长情况.研究人员将100株该种茶树幼苗在甲,乙两块试验田中进行种植,成熟后统计每株茶树的茶叶产量,将所得数据整理如下表所示:优质茶树非优质茶树甲试验田a25乙试验田10b已知甲试验田优质茶树的比例为50%(1)求表中a,b的值;(2)根据表中数据判断,是否有99%的把握认为甲,乙两块试验田的环境差异对茶树的生长有影响?附:,其中.0.100.050.01k2.7063.8416.63518.(12分)设,分别是椭圆:的左、右焦点,的离心率为,点是上一点.(1)求椭圆的方程;(2)过点的直线交椭圆E于A,B两点,且,求直线的方程.19.(12分)已知函数,.(1)讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.20.(12分)已知函数,若函数处取得极值(1)求,的值;(2)求函数在上的最大值和最小值21.(12分)已知抛物线的焦点为,点在抛物线上,且点的纵坐标为4,(1)求抛物线的方程;(2)过点作直线交抛物线于两点,试问抛物线上是否存在定点使得直线与的斜率互为倒数?若存在求出点的坐标,若不存在说明理由22.(10分)已知圆与(1)过点作直线与圆相切,求的方程;(2)若圆与圆相交于、两点,求的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据四点共面的向量表示,可得结果.【详解】由共面知,故选:【点睛】本题主要考查空间中四点共面的向量表示,属基础题.2、A【解析】根据正态曲线的对称性即可求得答案.【详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.3、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D4、A【解析】推导出函数为偶函数,结合已知条件可得出,,,利用导数可知函数在上为减函数,由此可得出、、的大小关系.【详解】因为函数的图象关于轴对称,则,故,,又因为,都有,所以,,所以,,,,因为当时,,,当且仅当时,等号成立,且不恒为零,故函数在上为减函数,因为,则,故.故选:A.5、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A6、D【解析】有两个零点等价于与的图象有两个交点,利用导数分析函数的单调性与最值,画出函数图象,数形结合可得结果.【详解】解:设,则,所以在上递减,在上递增,,且时,,有两个零点等价于与的图象有两个交点,画出的图象,如下图所示,由图可得,时,与的图象有两个交点,此时,函数有两个零点,实数m的取值范围是,故选:D.【点睛】方法点睛:本题主要考查分段函数的性质、利用导数研究函数的单调性、函数的零点,以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质7、A【解析】根据题意作出图形,进而根据几何概型求概率的方法求得答案.【详解】根据题意作出示意图,如图所示:于,所求概率.故选:A.8、A【解析】根据双曲线的几何性质和平面几何性质,建立关于a,b,c的方程,从而可求得双曲线的离心率得选项.【详解】由题意可设右焦点为,因为,且圆:,所以点在以焦距为直径的圆上,则,设的中点为点,则为的中位线,所以,则,又点在渐近线上,所以,且,则,,所以,所以,则在中,可得,,即,解得,所以,故选:A【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量9、D【解析】根据是正三角形可得的坐标,代入方程后可求离心率.【详解】不失一般性,可设椭圆的方程为:,为半焦距,为右焦点,因为且,故,故,,整理得到,故,故选:D.10、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C11、C【解析】对于A、B、D均可能出现,而对于C是正确的12、B【解析】结合判别式求得的取值范围.【详解】由于关于的一元二次不等式的解集为,所以,解得,所以实数的取值范围是.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、24【解析】根据条件求得每一年投入在最终结算时的总收入,利用错位相减法求得总收入.【详解】由题知,2021年的投入在结算时的收入为,2022年的投入在结算时的收入为,,2030年的投入在结算时的收入为,则结算时的总投资及收益为:①,则②,由①-②得,,则,故答案为:2414、.(答案不唯一)【解析】给出一个符合条件的值即可.【详解】当时,曲线表示焦点在轴上的双曲线,故答案为:.(答案不唯一)15、【解析】首先根据双曲线的渐近线方程和焦点坐标,求出双曲线的标准方程;设,根据双曲线的定义可知,从而利用基本不等式即可求出的最小值.【详解】因为双曲线的渐近线方程为,焦点坐标为,,所以,即,所以双曲线方程为.设,则,且,,当且仅当,即时等号成立,所以的最小值是.故答案为:.16、【解析】设抽到的次品的个数为,则,求出对应的概率即得解.【详解】解:设抽到的次品的个数为,则,所以所以抽到次品个数的数学期望的值是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)有99%的把握认为甲、乙两块试验田的环境差异对茶树的生长有影响【解析】(1)根据即可求出,从而可得到;(2)根据独立性检验的基本思想求出的观测值,与6.635比较,即可判断【小问1详解】甲试验田优质茶树比例为50%,即,解得【小问2详解】,因为,故有99%的把握认为甲、乙两块试验田的环境差异对茶树的生长有影响18、(1)(2)或【解析】(1)按照所给的条件带入椭圆方程以及e的定义即可;(2)联立直线与椭圆方程,表达出,解方程即可.【小问1详解】由题意知,,且,解得,,所以椭圆的方程为.【小问2详解】由题意知,直线的斜率存在且不为0,故可设直线的方程为,设,.由得,则……①,……②,因为,所以,,由可得……③由①②③可得,解得,,所以直线的方程为或,故答案为:,或.19、(1)时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2).【解析】(1)对求导得到,分和进行讨论,判断出的正负,从而得到的单调性;(2)设函数,分和进行讨论,根据的单调性和零点,得到答案.【详解】解:(1)函数定义域是,,当时,,函数在单调递增,无减区间;当时,令,得到,即,所以,,单调递增,,,单调递减,综上所述,时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2)由已知在恒成立,令,,可得,则,所以在递增,所以,①当时,,在递增,所以成立,符合题意.②当时,,当时,,∴,使,即时,在递减,,不符合题意.综上得【点睛】本题考查利用导数讨论函数的单调性,根据导数解决不等式恒成立问题,属于中档题.20、(1);(2)最大值为,最小值为【解析】(1)求出导函数,由即可解得;(2)求出函数的单调区间,进而可以求出函数的最值.【详解】解:(1)由题意,可得,得.(2),令,得或(舍去)当变化时,与变化如下递增递减所以函数在上的最大值为,最小值为.21、(1)(2)存在,【解析】(1)利用抛物线的焦半径公式求得点的横坐标,进而求得p,可得答案;(2)根据题意可设直线方程,和抛物线方程联立,得到根与系数的关系式,利用直线与的斜率互为倒数列出等式,化简可得结论.【小问1详解】(1)则,,,,故C的方程为:;【小问2详解】假设存在定点,使得直线与的斜率互为倒数,由题意可知,直线AB的斜率存在,且不为零,,,,,所以Δ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论