版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆乌鲁木齐市沙依巴克区四中2026届数学高二上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则点C到直线AB的距离为()A.3 B.C. D.2.若a,b,c为实数,且,则以下不等式成立的是()A. B.C. D.3.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,4.若公差不为0的等差数列的前n项和是,,且,,为等比数列,则使成立的最大n是()A.6 B.10C.11 D.125.如图,在四棱锥中,底面ABCD是平行四边形,已知,,,,则()A. B.C. D.6.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.7.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A B.2C. D.8.某三棱锥的三视图如图所示,则该三棱锥内切球的表面积为A.B.C.D.9.当圆的圆心到直线的距离最大时,()A B.C. D.10.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.11.某次射击比赛中,某选手射击一次击中10环的概率是,连续两次均击中10环的概率是,已知某次击中10环,则随后一次击中10环的概率是A. B.C. D.12.设,,,…,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正方体中,二面角的大小为__________(用反三角表示)14.已知函数的单调递减区间是,则的值为______.15.我国民间剪纸艺术在剪纸时经常会沿纸的某条对称轴把纸对折.现有一张半径为的圆形纸,对折次可以得到两个规格相同的图形,将其中之一进行第次对折后,就会得到三个图形,其中有两个规格相同,取规格相同的两个之一进行第次对折后,就会得到四个图形,其中依然有两个规格相同,以此类推,每次对折后都会有两个图形规格相同.如果把次对折后得到的不同规格的图形面积和用表示,由题意知,,则________;如果对折次,则________.16.某人实施一项投资计划,从2021年起,每年1月1日,把上一年工资的10%投资某个项目.已知2020年他的工资是10万元,预计未来十年每年工资都会逐年增加1万元;若投资年收益是10%,一年结算一次,当年的投资收益自动转入下一年的投资本金,若2031年1月1日结束投资计划,则他可以一次性取出的所有投资以及收益应有__________万元.(参考数据:,,)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆(1)求圆心的坐标和圆的面积;(2)若直线与圆相交于两点,求弦长18.(12分)已知函数.(1)求函数的极值;(2)是否存在实数,,,对任意的正数,都有成立?若存在,求出,,的所有值;若不存在,请说明理由.19.(12分)已知等差数列各项均不为零,为其前项和,点在函数的图像上.(1)求的通项公式;(2)若数列满足,求的前项和;(3)若数列满足,求的前项和的最大值、最小值.20.(12分)求适合下列条件的椭圆的标准方程:(1)经过点,;(2)长轴长是短轴长的3倍,且经过点21.(12分)已知抛物线上的点M(5,m)到焦点F的距离为6.(1)求抛物线C的方程;(2)过点作直线l交抛物线C于A,B两点,且点P是线段AB的中点,求直线l方程.22.(10分)已知数列满足,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求的最小值及此时的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D2、C【解析】利用不等式的性质直接推导和取值验证相结合可解.【详解】取可排除ABD;由不等式的性质易得C正确.故选:C3、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.4、C【解析】设等差数列的公差为d,根据,且,,为等比数列,求得首项和公差,再利用前n项和公式求解.【详解】设等差数列的公差为d,因为,且,,为等比数列,所以,解得或(舍去),则,所以,解得,所以使成立的最大n是11,故选:C5、A【解析】利用空间向量加法法则直接求解【详解】连接BD,如图,则故选:A6、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.7、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.8、A【解析】由三视图可知该几何体是一个三棱锥,根据等积法求出几何体内切球的半径,再计算内切球的表面积【详解】解:由三视图知该几何体是一个三棱锥,放入棱长为2的正方体中,如图所示:设三棱锥内切球的半径为,则由等体积法得,解得,所以该三棱锥内切球的表面积为故选:A【点睛】本题考查了由三视图求三棱锥内切球表面积的应用问题,属于中档题9、C【解析】求出圆心坐标和直线过定点,当圆心和定点的连线与直线垂直时满足题意,再利用两直线垂直,斜率乘积为-1求解即可.【详解】解:因为圆的圆心为,半径,又因为直线过定点A(-1,1),故当与直线垂直时,圆心到直线的距离最大,此时有,即,解得.故选:C.10、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.11、B【解析】根据条件概率的计算公式,得所求概率为,故选B.12、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】作出二面角的平面角,并计算出二面角的大小.【详解】设,画出图像如下图所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小为.故答案为:14、【解析】先求出,由题设易知是的解集,利用根与系数关系求m、n,进而求的值.【详解】由题设,,由单调递减区间是,∴的解集为,则是的解集,∴,可得,故.故答案为:15、①.②.【解析】首先根据题意得到,再计算即可;根据题意得到,再利用分组求和法求和即可.【详解】因为,,所以,所以..故答案为:;16、24【解析】根据条件求得每一年投入在最终结算时的总收入,利用错位相减法求得总收入.【详解】由题知,2021年的投入在结算时的收入为,2022年的投入在结算时的收入为,,2030年的投入在结算时的收入为,则结算时的总投资及收益为:①,则②,由①-②得,,则,故答案为:24三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)圆心,面积为;(2).【解析】(1)将圆化为标准方程,进而求出圆心、半径和圆的面积;(2)求出圆心到直线的距离,进而通过勾股定理求得答案.【小问1详解】由已知,得:,所以圆心,半径为,面积为.【小问2详解】圆心到直线距离为,则.18、(1)极小值为:,无极大值(2),,【解析】(1)先求导求单调性,再判断极值点求极值即可;(2)易知,只需要为函数和的公切线即可,求出公切线,代入后分别证明和成立即可.【小问1详解】由题意知:,令,解得,令,解得,所以函数在单调递增,在单调递减,所以为函数的极小值点,即极小值为:,无极大值.【小问2详解】设,易知,所以点是和的公共点,要使成立,只需要为函数和的公切线即可,由(1)知,,所以在点处的切线为:,同理可得在点处的切线为:,由题意知为同一条直线,所以解得,即等价于;下面证明这个式子成立:首先证明等价于,设,所以,恒成立,所以单调递增,易知,所以当时,,当时,,所以在单调递减,在单调递增,所以,故不等式成立,即成立;再证明:等价于,设,所以,所以当时,,当时,,所以在单调递增,在单调递减,所以,故不等式成立,即成立;综上所述,存在,,使得成立.故:,,.【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.19、(1)(2)(3)最大值为,最小值为【解析】(1)将点代入函数解析再结合前和即可求解;(2)运用错位相减法或分组求和法都可以求解;(3)将数列的通项变形为,再求和,通过分类讨论从单调性上分析求解即可.【小问1详解】因为点在函数的图像上,所以,又数列是等差数列,所以,即所以,;【小问2详解】解法1:,==,解法2:,①,②①-②得,;【小问3详解】记的前n项和为,则=,当n为奇数时随着n的增大而减小,可得,当n为偶数时随着n增大而增大,可得,所以的最大值为,最小值为.20、(1);(2)或.【解析】(1)由已知可得,,且焦点在轴上,进而可得椭圆的标准方程;(2)由已知可得,,此时焦点在轴上,或,,此时焦点在轴上,进而可得椭圆的标准方程;【小问1详解】解:椭圆经过点,,,,,且焦点在轴上,椭圆的标准方程为.【小问2详解】解:长轴长是短轴长的3倍,且经过点,当点在长轴上时,,,此时焦点在轴上,此时椭圆的标准方程为;当点在短轴上时,,,此时焦点在轴上,此时椭圆的标准方程.综合得椭圆的方程为或.21、(1)(2)【解析】(1)由抛物线定义有求参数,即可写出抛物线方程.(2)由题意设,联立抛物线方程,结合韦达定理、中点坐标求参数k,即可得直线l方程【小问1详解】由题设,抛物线准线方程为,∴抛物线定义知:可得,故【小问2详解】由题设,直线l的斜率存在且不为0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46385.2-2025光路板第2部分:基本试验和测量程序光学特性测量条件导则
- GB/T 46384.1-2025电子气体中酸度的测定第1部分:傅里叶变换红外光谱法
- GB/T 714-2025桥梁用结构钢
- GB/T 46803.2-2025信息技术基于极化码的低功耗无线通信网络第2部分:数据链路层
- 2026年浙江育英职业技术学院单招职业倾向性考试题库参考答案详解
- 2026年贵州水利水电职业技术学院单招综合素质考试题库及答案详解1套
- 2026年西安城市建设职业学院单招职业倾向性测试题库及参考答案详解一套
- 2026年汕头职业技术学院单招职业技能测试题库及答案详解1套
- 2026年甘肃畜牧工程职业技术学院单招职业技能考试题库及参考答案详解一套
- 2026年厦门安防科技职业学院单招综合素质考试题库及完整答案详解1套
- 2026年辽宁理工职业大学单招职业适应性测试题库及参考答案详解
- 接地线课件教学课件
- 2025西部科学城重庆高新区招聘急需紧缺人才35人考试笔试模拟试题及答案解析
- 2026苏州大学附属第二医院(核工业总医院)护理人员招聘100人(公共基础知识)测试题带答案解析
- 2025水发集团社会招聘269人参考笔试题库及答案解析
- 2024江苏南京市鼓楼区司法局社区矫正社会工作者招聘1人备考题库及答案解析(夺冠)
- 中国定制客运发展报告(2024)-
- 2026中国储备粮管理集团有限公司湖北分公司招聘33人笔试历年题库及答案解析(夺冠)
- 2026年春湘教版地理八年级下册第九章 第九章 建设永续发展的美丽中国课件
- (一模)2025年嘉兴市2026届高三教学测试英语试卷(含答案)
- 食品生产企业GMP培训大纲
评论
0/150
提交评论