版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省自贡市2026届高二上数学期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点P在抛物线上,点Q在圆上,则的最小值为()A. B.C. D.2.数列满足,则数列的前n项和为()A. B.C. D.3.已如双曲线(,)的左、右焦点分别为,,过的直线交双曲线的右支于A,B两点,若,且,则该双曲线的离心率为()A. B.C. D.4.直线(t为参数)被圆所截得的弦长为()A. B.C. D.5.在等差数列中,,,则的取值范围是()A. B.C. D.6.数列,则是这个数列的第()A.项 B.项C.项 D.项7.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.58.若函数在区间内存在单调递增区间,则实数的取值范围是()A. B.C. D.9.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.10.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.11.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.912.中心在原点的双曲线C的右焦点为,实轴长为2,则双曲线C的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,若乙的总成绩是445,则污损的数字是________14.一条光线经过点射到直线上,被反射后经过点,则入射光线所在直线的方程为___________.15.已知抛物线:上有两动点,,且,则线段的中点到轴距离的最小值是___________.16.在数列中,,,,若数列是递减数列,数列是递增数列,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:,在下面①②中任选一个作为:,使为真命题,求出实数a取值范围.①关于x的方程有两个不等正根;②.(若选①、选②都给出解答,只按第一个解答计分.)18.(12分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱中点(1)求证:;(2)求直线AB与平面所成角的正弦值19.(12分)已知点到两个定点的距离比为(1)求点的轨迹方程;(2)若过点的直线被点的轨迹截得的弦长为,求直线的方程20.(12分)如图,矩形ABCD,点E,F分别是线段AB,CD的中点,,,以EF为轴,将正方形AEFD翻折至与平面EBCF垂直的位置处.请按图中所给的方法建立空间直角坐标系,然后用空间向量坐标法完成下列问题(1)求证:直线平面;(2)求直线与平面所成角的正弦值.21.(12分)设函数(1)求的值;(2)求的极大值22.(10分)已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先计算抛物线上的点P到圆心距离的最小值,再减去半径即可.【详解】设,由圆心,得,∴时,,∴故选:C.2、D【解析】利用等差数列的前n项和公式得到,进而得到,利用裂项相消法求和.【详解】依题意得:,,,故选:D3、A【解析】先作辅助线,设出边长,结合题干条件得到,,利用勾股定理得到关于的等量关系,求出离心率.【详解】连接,设,则根据可知,,因为,由勾股定理得:,由双曲线定义可知:,,解得:,,从而,解得:,所以,,由勾股定理得:,从而,即该双曲线的离心率为.故选:A4、C【解析】求得直线普通方程以及圆的直角坐标方程,利用弦长公式即可求得结果.【详解】因为直线的参数方程为:(t为参数),故其普通方程为,又,根据,故可得,其表示圆心为,半径的圆,则圆心到直线的距离,则该直线截圆所得弦长为.故选:C.5、A【解析】根据题设可得关于的不等式,从而可求的取值范围.【详解】设公差为,因为,,所以,即,从而.故选:A.6、A【解析】根据数列的规律,求出通项公式,进而求出是这个数列的第几项【详解】数列为,故通项公式为,是这个数列的第项.故选:A.7、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C8、D【解析】求出函数的导数,问题转化为在有解,进而求函数的最值,即可求出的范围.【详解】∵,∴,若在区间内存在单调递增区间,则有解,故,令,则在单调递增,,故.故选:D.9、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.10、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A11、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B12、D【解析】根据条件,求出,的值,结合双曲线的方程进行求解即可【详解】解:设双曲线的方程为由已知得:,,再由,,双曲线的方程为:故选:D二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】设污损的叶对应的成绩是x,由茎叶图可得445=83+83+87+x+99,解得x=93,故污损的数字是3.考点:茎叶图.14、【解析】先求点关于直线的对称点,连接,则直线即为所求.【详解】设点关于直线的对称点为,则,解得,所以,又点,所以,直线的方程为:,由图可知,直线即为入射光线,所以化简得入射光线所在直线的方程:.故答案为:.15、2【解析】设抛物线的焦点为,由,结合抛物线的定义可得线段的中点到轴距离的最小值.【详解】设抛物线的焦点为,点在抛物线的准线上的投影为,点在直线上的投影为,线段的中点为,点到轴的距离为,则,∴,当且仅当即三点共线时等号成立,∴线段的中点到轴距离的最小值是2,故答案为:2.16、【解析】根据所给条件可归纳出当时,,利用迭代法即可求解.【详解】因为,,,所以,即,,且是递减数列,数列是递增数列或(舍去),,,故可得当时,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、答案见解析【解析】根据题意,分析、为真时的取值范围,又由复合命题真假的判断方法可得、都是真命题,据此分析可得答案.【详解】解:选①时由知在上恒成立,∴,即又由q:关于x的方程有两个不等正根,知解得,由为真命题知,解得.实数a的取值范围.选②时由知在上恒成立,∴,即又由,知在上恒成立,∴,又,当且仅当时取“=”号,∴,由为真命题知,解得.实数a的取值范围.18、(1)证明见解析;(2).【解析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂直的判定及性质证明结论;(2)构建空间直角坐标系,确定相关点坐标,进而求的方向向量、面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】在三棱柱中,平面,则平面,由平面,则,,则,又为的中点,则,又,则平面,由平面,因此,.【小问2详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,.∴,,,,设为面的法向量,则,令得,设与平面所成角为,则,∴直线与平面所成角的正弦值为.19、(1)(2)或【解析】(1)设出,表达出,直接法求出轨迹方程;(2)在第一问的基础上,先考虑直线斜率不存在时是否符合要求,再考虑斜率存在时,设出直线方程,表达出圆心到直线的距离,利用垂径定理列出方程,求出直线方程.【小问1详解】设,则,,故,两边平方得:【小问2详解】当直线斜率不存在时,直线为,此时弦长为,满足题意;当直线斜率存在时,设直线,则圆心到直线距离为,由垂径定理得:,解得:,此时直线的方程为,综上:直线的方程为或.20、(1)证明见解析;(2).【解析】(1)以为坐标原点,建立空间直角坐标系,写出对应向量的坐标,根据向量垂直,即可证明线面垂直;(2)根据(1)中所求平面的法向量,利用向量法,即可容易求得结果.【小问1详解】矩形ABCD中,点E,F分别是线段AB,CD的中点,∴,∴翻折后∵平面平面,且面,面,故可得面,又面,∴,故两两垂直,∴分别以,,为,,轴建立如图所示空间直角坐标系:∵,则,,,,,,∵,,∴,∴,,又面,∴平面.【小问2详解】由(1)知,平面的法向量为,又向量,则向量与法向量为所成角的余角即是直线与平面所成角,设直线与平面所成角为,向量与法向量为所成角为,则.故直线与平面所成角正弦值为.21、(1)-3(2)2【解析】(1)利用导数公式和法则求解;(2)令,利用极大值的定义求解.【小问1详解】解:因为函数,所以,所以;【小问2详解】令,得,当或时,,当时,,所以当时,取得极大值.22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年新疆喀什地区单招职业倾向性测试题库及完整答案详解1套
- 2026年菏泽学院单招职业适应性测试题库及答案详解一套
- 2026年天津交通职业学院单招职业倾向性测试题库及答案详解1套
- 2026年河北东方学院单招职业适应性测试题库附答案详解
- 2026年广东建设职业技术学院单招职业适应性考试题库及完整答案详解1套
- 辽宁联考面试题目及答案
- 2025年中国科学院高能物理研究所AI应用工程师岗位招聘备考题库完整答案详解
- 元阳县2026年教育体育系统事业单位校园公开招聘备考题库及答案详解参考
- 2025年发展研究院招聘公共绩效与信息化研究中心项目主管岗位备考题库有答案详解
- 2025年福州仲裁委秘书处公开招聘劳务派遣工作人员11人备考题库有答案详解
- (2025年标准)科研资助经费协议书
- 知识产权侵权培训课件
- 2025年四川省事业单位招聘考试综合类公共基础知识真题模拟试卷
- 肿瘤常见急症及处理
- 阑尾炎健康宣教课件
- 2025年辅助考试员考试题库
- 供应链协同策略-洞察及研究
- 包拯课件教学课件
- Metal干法刻蚀工艺介绍课件
- 家具促销活动启动会
- 矿洞探险之旅行业深度调研及发展项目商业计划书
评论
0/150
提交评论