版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳一中2026届高一数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知α是第三象限的角,且,则()A. B.C. D.2.若函数f(x)=2x+3x+a在区间(0,1)A.(-∞,-5)C.(0,5) D.(1,+3.下列结论中正确的是()A.当时,无最大值 B.当时,的最小值为3C.当且时, D.当时,4.已知函数在区间上有且只有一个零点,则正实数的取值范围是()A. B.C. D.5.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足(表示碳14原有的质量).经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约()年到5730年之间?(参考数据:,)A.4011 B.3438C.2865 D.22926.已知函数,若函数在上有三个零点,则的最大值为A. B.C. D.7.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.8.若圆上有且仅有两个点到直线的距离等于1,则半径的取值范围是()A. B.C. D.9.下列函数中,最小正周期为π2A.y=cosxC.y=cos2x10.函数在上的部分图象如图所示,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设当时,函数取得最大值,则__________.12.若不等式的解集为,则______,______13.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.14.方程的解在内,则的取值范围是___________.15.若sinα<0且tanα>0,则α是第___________象限角16.函数单调递增区间为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断函数f(x)的奇偶性;(2)讨论f(x)的单调性;(3)解不等式.18.已知函数,该函数图象一条对称轴与其相邻的一个对称中心的距离为(1)求函数的对称轴和对称中心;(2)求在上的单调递增区间19.如图,在平面直角坐标系中,角,的始边均为轴正半轴,终边分别与圆交于,两点,若,,且点的坐标为(1)若,求实数的值;(2)若,求的值20.如图,已知圆的圆心在坐标原点,点是圆上的一点(Ⅰ)求圆的方程;(Ⅱ)若过点的动直线与圆相交于,两点.在平面直角坐标系内,是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由21.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由已知求得,则由诱导公式可求.【详解】α是第三象限的角,且,,.故选:B.2、B【解析】利用零点存在性定理知f(0)⋅f(1)<0,代入解不等式即可得解.【详解】函数f(x)=2x+3x+a由零点存在性定理知f(0)⋅f(1)<0,即1+a5+a<0所以实数a的取值范围是(-5,-1)故选:B3、D【解析】利用在单调递增,可判断A;利用均值不等式可判断B,D;取可判断C【详解】选项A,由都在单调递增,故在单调递增,因此在上当时取得最大值,选项A错误;选项B,当时,,故,当且仅当,即时等号成立,由于,故最小值3取不到,选项B错误;选项C,令,此时,不成立,故C错误;选项D,当时,,故,当且仅当,即时,等号成立,故成立,选项D正确故选:D4、D【解析】将零点个数问题转化为两个函数图象的交点个数问题,通过对参数讨论作图可解.【详解】在区间上有且只有一个零点在区间上有且只有一个解,即在区间上有且只有一个解令,,当,即时,因为在上单调递减,在上单调递增且,,由图1知,此时函数与在上只有一个交点;当,即时,因为,所以要使函数与在上有且只有一个交点,由图2知,即,解得或(舍去).综上,的取值范围为.故选:D5、A【解析】由已知条件可得,两边同时取以2为底的对数,化简计算可求得答案【详解】因为碳14的质量是原来的至,所以,两边同时取以2为底的对数得,所以,所以,则推测良渚古城存在的时期距今约在4011年到5730年之间.故选:A.6、C【解析】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,画出函数图像,结合图象进而求得答案【详解】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,结合函数图象可知,当直线经过点时,取得最小值,从而取得最大值,且.【点睛】本题考查函数的零点问题,解题的关键是得出函数与的图象在上有三个不同的交点,属于一般题7、D【解析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积【详解】设球的半径为,∵,∴平面与球心的距离为,∵截球所得截面的面积为,∴时,,故由得,∴,∴球的表面积,故选D【点睛】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题.8、C【解析】圆上有且仅有两个点到直线的距离等于1,先求圆心到直线的距离,再求半径的范围【详解】解:圆的圆心坐标,圆心到直线的距离为:,又圆上有且仅有两个点到直线的距离等于1,满足,即:,解得故半径的取值范围是,(如图)故选:【点睛】本题考查直线与圆的位置关系,考查数形结合的数学思想,属于中档题9、D【解析】利用三角函数的周期性求解.【详解】A.y=cosx周期为T=2πB.y=tanx的周期为C.y=cos2x的周期为D.y=tan2x的周期为故选:D10、C【解析】由图象最值和周期可求得和,代入可求得,从而得到函数解析式,代入可求得结果.【详解】由图象可得:,代入可得:本题正确选项:【点睛】本题考查三角函数值的求解,关键是能够根据正弦函数的图象求解出函数的解析式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.12、①.②.【解析】由题设知:是的根,应用根与系数关系即可求参数值.【详解】由题设,是的根,∴,即,.故答案为:,.13、【解析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角14、【解析】先令,按照单调性求出函数的值域,写出的取值范围即可.【详解】令,显然该函数增函数,,值域为,故.故答案为:.15、第三象限角【解析】当sinα<0,可知α是第三或第四象限角,又tanα>0,可知α是第一或第三象限角,所以当sinα<0且tanα>0,则α是第三象限角考点:三角函数值的象限符号.16、【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)在上单调递增(3)【解析】(1)依据奇偶函数定义去判断即可;(2)以定义法去证明函数的单调性;(3)把抽象不等式转化为整式不等式再去求解即可.【小问1详解】由得,所以函数f(x)的定义域为,关于原点对称又因为,故函数为奇函数【小问2详解】设任意,,则又,则,则,即故在上单调递增【小问3详解】由(2)知,函数在上单调递增,所以由,可得,解得,所以不等式的解集为18、(1)对称轴为,;,(2)和【解析】(1)先把化简成一个角的三角函数形式,再整体代换法去求的对称轴和对称中心;(2)整体代换法去求在上的单调递增区间即可.【小问1详解】由题可知,由对称轴与其相邻的一个对称中心的距离为,得,解得,所以令,即,所以的对称轴为,;令,即,所以的对称中心为,【小问2详解】令∵,∴,由图可知,只需满足或,即或,∴在上的单调递增区间是和19、(1);(2)【解析】(1)根据题中条件,先由二倍角的正切公式,求出,再根据任意角的三角函数,即可求出的值;(2)由题中条件,根据两角差的正切公式,先得到,再由同角三角函数基本关系,求出和,利用二倍角公式,以及两角和的余弦公式,即可求出结果.【详解】(1)由题意可得,∴,或∵,∴,即,∴(2)∵,,,∴,,∴,,∴20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)设圆的方程为,将代入,求得,从而可得结果;(Ⅱ)先设,由可得,再证明对任意,满足即可,,则利用韦达定理可得,,由角平分线定理可得结果.【详解】(Ⅰ)设圆的方程为,将代入,求得,所以圆的方程为;(Ⅱ)先设,,由由(舍去)再证明对任意,满足即可,由,则则利用韦达定理可得,化为所以,由角平分线定理可得,即存在与点不同的定点,使得恒成立,.【点睛】本题主要考查待定系数法求圆方程及韦达定理、直线和圆的位置关系及曲线线过定点问题.属于难题.探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 精神病休学协议书
- 余欢捐款协议书
- 代办法人协议书
- 经理聘用合同协议
- 债券募集协议书
- 绿化施工易协议书
- 托育机构协议合同
- 窗帘上游合同范本
- 广东省客运协议书
- 疏通下水合同范本
- 2025年秋人教版(2024)初中美术七年级上册期末知识点复习卷及答案
- 2025年高校行政面试题及答案
- 雨课堂学堂在线学堂云《English for Presentations at International Medical Conferences》单元测试考核答案
- 形势与政策(吉林大学)智慧树知到答案2024年吉林大学
- 药房药品安全管理月检查表
- 丙烯酸甲酯仿真操作特点课件
- 公司管理客户档案管理PPT课件(带内容)
- 二级减速器设计自动计算参数
- 数独题目大全(九宫格)
- 京新高速公路连接线箱梁及空心板架设劳务分包工程投标文件
- 建筑工程合同中英文版
评论
0/150
提交评论