版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省揭阳市惠来一中、揭东一中数学高一上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.空间直角坐标系中,已知点,则线段的中点坐标为A. B.C. D.2.已知,则的值是A. B.C. D.3.命题“,”的否定是()A., B.,C., D.,4.某几何体的三视图如图所示,则该几何体的体积为()A.16 B.15C.18 D.175.已知函数,则下列对该函数性质的描述中不正确的是()A.的图像关于点成中心对称B.的最小正周期为2C.的单调增区间为D.没有对称轴6.将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向右平移个单位,得到的图象对应的解析式是A. B.C. D.7.如果直线l,m与平面满足和,那么必有()A.且 B.且C.且 D.且8.已知函数,则()A.当且仅当时,有最小值为B.当且仅当时,有最小值为C.当且仅当时,有最大值为D.当且仅当时,有最大值为9.已知函数是定义在上的奇函数,对任意的都有,当时,,则()A. B.C. D.10.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,若为偶函数,则最小的正数的值为______12.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.13.设函数在区间上的最大值和最小值分别为M、m,则___________.14.若函数是R上的减函数,则实数a的取值范围是___15.给出下列命题:①函数是偶函数;②方程是函数的图象的一条对称轴方程;③在锐角中,;④函数的最小正周期为;⑤函数的对称中心是,,其中正确命题的序号是________.16.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:0050(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;(Ⅱ)将图象上所有点向左平行移动个单位长度,得到的图象.若图象的一个对称中心为,求的最小值18.已知集合,,.(Ⅰ)求,;(Ⅱ)若,求实数的取值范围.19.设集合,语句,语句.(1)当时,求集合与集合的交集;(2)若是的必要不充分条件,求正实数的取值范围.20.冰雪装备器材产业是冰雪产业的重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?21.已知函数f(x)=Asin(ωx+)
(x∈R,A>0,ω>0,||<)的部分图象如图所示,(Ⅰ)试确定f(x)的解析式;(Ⅱ)若=,求cos(-α)的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】点,由中点坐标公式得中得为:,即.故选A.2、C【解析】由可得,化简则,从而可得结果.【详解】,,故选C.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角3、C【解析】利用全称量词的命题的否定解答即可.【详解】解:因为全称量词的命题的否定是存在量词的命题,命题“,”是全称量词的命题,所以其否定是“,”.故选:C4、B【解析】由三视图还原的几何体如图所示,结合长方体的体积公式计算即可.【详解】由图可知,该几何体是在一个长方体的右上角挖去一个小长方体,如图,故该几何体的体积为故选:B5、C【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可【详解】对于A:令,令,可得函数的一个对称中心为,故正确;对于B:函数f(x)的最小正周期为T=,故正确;对于C:令,解不等式可得函数的单调递增区间为,故错误;对于D:正切函数不是轴对称图形,故正确故选:C【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键6、D【解析】横坐标伸长倍,则变为;根据左右平移的原则可得解析式.【详解】横坐标伸长倍得:向右平移个单位得:本题正确选项:【点睛】本题考查三角函数图象平移变换和伸缩变换,关键是能够明确伸缩变换和平移变换都是针对于的变化.7、A【解析】根据题设线面关系,结合平面的基本性质判断线线、线面、面面的位置关系.【详解】由,则;由,则;由上条件,m与可能平行、相交,与有可能平行、相交.综上,A正确;B,C错误,m与有可能相交;D错误,与有可能相交故选:A8、A【解析】由基本不等式可得答案.【详解】因为,所以,当且仅当即时等号成立.故选:A.9、C【解析】由可推出,可得周期,再利用函数的周期性与奇偶性化简,代入解析式计算.【详解】因为,所以,故周期为,又函数是定义在上的奇函数,当时,,所以故选:C.10、A【解析】由斜二测画法的规则知与x'轴平行或重合的线段与x’轴平行或重合,其长度不变,与y轴平行或重合的线段与x’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A选项符合题意.故应选A考点:斜二测画法点评:注意斜二测画法中线段长度的变化二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数的奇偶性知应可用诱导公式化为余弦函数【详解】,其为偶函数,则,,,其中最小的正数为故答案【点睛】本题考查三角函数的奇偶性,解题时直接利用诱导公式分析即可12、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.13、2【解析】,令,易得函数为奇函数,则,从而可得出答案.【详解】解:,令,因为,所以函数为奇函数,所以,即,所以,即.故答案为:2.14、【解析】按照指数函数的单调性及端点处函数值的大小关系得到不等式组,解不等式组即可.【详解】由题知故答案为:.15、①②③【解析】由诱导公式化简得函数,判断①正确;求出函数的图象的对称轴(),当时,,判断②正确;在锐角中,由化简得到,判断③正确;直接求出函数的最小正周期为,判断④错误;直接求出函数的对称中心是,判断⑤错误.【详解】①因为函数,所以函数是偶函数,故①正确;②因为函数,所以函数图象的对称轴(),即(),当时,,故②正确;③在锐角中,,即,所以,故③正确;④函数的最小正周期为,故④错误;⑤令,解得,所以函数的对称中心是,故⑤错误.故答案为:①②③【点睛】本题考查三角函数的图象与性质、诱导公式与三角恒等变换,是中档题.16、【解析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据表中已知数据,解得.数据补全如下表:00500且函数表达式为.(Ⅱ)由(Ⅰ)知,得因为对称中心为,令,解得,由于函数的图象关于点成中心对称,令,解得,.由可知,当时,取得最小值.考点:“五点法”画函数在某一个周期内的图象,三角函数的平移变换,三角函数的性质18、(1)(2)或.【解析】(Ⅰ)由交并补集定义可得;(Ⅱ),说明有公共元素,由这两个集合的形式,知或即可.试题解析:(Ⅰ),,,又,;(Ⅱ)若,则需或,解得或.19、(1);(2).【解析】(1)解一元二次不等式求集合A、B,应用集合的交运算求交集即可.(2)根据必要不充分关系有,即可求的范围.【小问1详解】由题设,,当时,所以;【小问2详解】由题设,,且,若是的必要不充分条件,则,又a为正实数,即,解得,故的取值范围为.20、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.21、(1);(2).【解析】(Ⅰ)由图象可知A=2,=-=,∴T=2,ω==π将点(,2)代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论