版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省夏邑一高2026届高二上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若等比数列的前n项和,则r的值为()A. B.C. D.2.已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是()A B.C. D.3.若、、为空间三个单位向量,,且与、所成的角均为,则()A.5 B.C. D.4.已知,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件5.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=16.直线被椭圆截得的弦长是A. B.C. D.7.如图,某圆锥轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A. B.C. D.8.在正方体中,下列几种说法不正确的是A. B.B1C与BD所成的角为60°C.二面角的平面角为 D.与平面ABCD所成的角为9.函数的极大值点为()A. B.C. D.不存在10.如图,是边长为4的等边三角形的中位线,将沿折起,使得点A与P重合,平面平面,则四棱锥外接球的表面积是()A. B.C. D.11.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.12.数列,,,,…,的通项公式可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知正方形边长为,长方形中,,平面与平面互相垂直,是线段的中点,则异面直线与所成角的余弦值为______14.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点,均在轴上,且,的面积为,则的标准方程为______15.下图是个几何体的展开图,图①是由个边长为的正三角形组成;图②是由四个边长为的正三角形和一个边长为的正方形组成;图③是由个边长为的正三角形组成;图④是由个边长为的正方形组成.若几何体能够穿过直径为的圆,则该几何体的展开图可以是______(填所有正确结论的序号).16.如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽cm,杯深8cm,称为抛物线酒杯.①在杯口放一个表面积为的玻璃球,则球面上的点到杯底的最小距离为______cm;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为______(单位:cm)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在半径为6m的圆形O为圆心铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面不计剪裁和拼接损耗,设矩形的边长|AB|xm,圆柱的体积为Vm3.(1)写出体积V关于x的函数关系式,并指出定义域;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大最大体积是多少?18.(12分)已知椭圆的离心率为,点在椭圆C上.(1)求椭圆C的标准方程;(2)已知直线与椭圆C交于P,Q两点,点M是线段PQ的中点,直线过点M,且与直线l垂直.记直线与y轴的交点为N,求的取值范围.19.(12分)数列的前n项和为,(1)求数列的通项公式;(2)令,求数列的前n项和20.(12分)如图,正方形和四边形所在的平面互相垂直,.(1)求证:平面;(2)求平面与平面的夹角.21.(12分)设P是抛物线上一个动点,F为抛物线的焦点.(1)若点P到直线距离为,求的最小值;(2)若,求的最小值.22.(10分)有三个条件:①数列的任意相邻两项均不相等,,且数列为常数列,②,③,,中,从中任选一个,补充在下面横线上,并回答问题已知数列的前n项和为,______,求数列的通项公式和前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用成等比数列来求得.【详解】依题意,等比数列的前n项和,,,所以.故选:B2、B【解析】根据导数的几何意义,求出切线方程,求出切线和横截距a和纵截距b,面积为【详解】由题意可得,所以,则所求切线方程为令,得;令,得故所求三角形的面积为故选:B3、C【解析】先求的平方后再求解即可.【详解】,故,故选:C4、C【解析】根据充要条件的定义进行判断【详解】解:因为函数为增函数,由,所以,故“”是“”的充分条件,由,所以,故“”是“”的必要条件,故“”是“”的充要条件故选:C5、C【解析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C6、A【解析】直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A【点睛】本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题7、C【解析】建立空间直角坐标系,分别得到,然后根据空间向量夹角公式计算即可.【详解】以过点且垂直于平面的直线为轴,直线,分别为轴,轴,建立如图所示的空间直角坐标系.不妨设,则根据题意可得,,,,所以,,设异面直线与所成角为,则.故选:C.8、D【解析】在正方体中,利用线面关系逐一判断即可.【详解】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵B1C∥D,即B1C与BD所成的角为∠DB,连接△DB为等边三角形,∴B1C与BD所成的角为60°,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误故选D【点睛】本题考查了线面的空间位置关系及空间角,做出图形分析是关键,考查推理能力与空间想象能力9、B【解析】求导,令导数等于0,然后判断导数符号可得,或者根据对勾函数图象可解.【详解】令,得,因为时,,时,,所以时有极大值;当时,,时,,所以时有极小值.故选:B10、A【解析】分别取的中点,易得,则点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,设外接球的半径为,,利用勾股定理求得半径,从而可得出答案.【详解】解:分别取的中点,在等边三角形中,,是中位线,则都是等边三角形,所以,所以点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,由为的中点,所以,因为平面平面,且平面平面,平面,所以平面,则,设外接球半径为,,,则,,所以,解得,所以,所以四棱锥外接球的表面积是.故选:A.第II卷11、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.12、D【解析】利用数列前几项排除A、B、C,即可得解;【详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立如图所示的空间直角坐标系,求出,后可求异面直线所成角的余弦值.【详解】长方形可得,因为平面与平面互相垂直,平面平面,平面,故平面,故可建立如图所示的空间直角坐标系,则,故,,故.故答案为:14、【解析】利用待定系数法列出关于的方程解出即可得结果.【详解】设的标准方程为,则解得所以的标准方程为故答案为:.15、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与比较大小,即可确定答案.【详解】①由题设,几何体为棱长为的正四面体,该正四面体可放入一个正方体中,且正方体的棱长为,该正四面体的外接球半径为,满足要求;②由题设,几何体为棱长为的正四棱锥,如下图所示:设,连接,则为、的中点,因为四边形是边长为的正方形,则,所以,,所以,,所以,,,所以点为正四棱锥的外接球球心,且该球的半径为,不满足要求;③由题设,几何体为棱长为的正八面体,该正八面体可由两个共底面,且棱长均为的正四棱锥拼接而成,由②可知,该正八面体的外接球半径为,不满足要求;④由题设,几何体为棱长为的正方体,其外接球半径为,不满足要求;故答案为:①.16、①.②.【解析】根据题意,,进而得,,故最小距离为;进而建立坐标系,得抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,此时设玻璃球轴截面所在圆的方程为,进而只需满足抛物线上的点到圆心的距离大于等于半径恒成立,再根据几何关系求解即可.【详解】因为杯口放一个表面积为的玻璃球,所以球的半径为,又因为杯口宽cm,所以如图1所示,有,所以,所以,所以,又因为杯深8cm,即故最小距离为如图1所示,建立直角坐标系,易知,设抛物线的方程为,所以将代入得,故抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,如图2,设玻璃球轴截面所在圆的方程为,依题意,需满足抛物线上的点到圆心的距离大于等于半径恒成立,即,则有恒成立,解得,可得.所以玻璃球的半径的取值范围为.故答案为:;【点睛】本题考查抛物线的应用,考查数学建模能力,运算求解能力,是中档题.本题第二问解题的关键在于设出球触及酒杯底部的轴截面圆的方程,进而将问题转化为抛物线上的点到圆心的距离大于等于半径恒成立求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)时,最大值为m3.【解析】(1)连接,在中,由,利用勾股定理可得,设圆柱底面半径为,求出.利用(其中即可得出;(2)利用导数,求出V的单调性,即可得出结论【小问1详解】连接,在中,,,设圆柱底面半径为,则,即,,其中【小问2详解】由及,得,列表如下:,0↗极大值↘∴当时,有极大值,也是最大值为m318、(1)(2)【解析】(1)求出后可得椭圆的方程.(2)联立直线的方程和椭圆方程,消去后利用韦达定理可用表示,利用换元法和二次函数的性质可求的取值范围.小问1详解】由题意可得,解得,.故椭圆C的标准方程为.【小问2详解】设,,.联立,整理得,则,解得,从而,.因为M是线段PQ的中点,所以,则,故.直线的方程为,即.令,得,则,所以.设,则,故.因为,所以,所以.19、(1);(2).【解析】(1)根据给定条件结合“当时,”计算作答.(2)由(1)求出,利用裂项相消法计算得解.【小问1详解】数列的前n项和为,,当时,,当时,,满足上式,则,所以数列的通项公式是【小问2详解】由(1)知,,所以,所以数列的前n项和20、(1)证明见解析(2)【解析】(1)由题意可证得,所以以C为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用空间向量证明,(2)求出两个平面的法向量,利用空间向量求解【小问1详解】∵平面平面,平面平面,∴平面,∴,以C为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则,.设平面的法向量为,则,令,则,∵平面,∴∥平面.【小问2详解】,设平面的法向量为,则,令,则.∴.由图可知平面与平面的夹角为锐角,所以平面与平面的夹角为.21、(1);(2)4.【解析】(1)利用抛物线的定义可知,将问题问题转化为求的最小值,即求.(2)判断点B在抛物线的内部,过B作垂直准线于点Q,交抛物线于点,利用抛物线的定义求解即可.【详解】解析(1)依题意,抛物线的焦点为,准线方程为.由已知及抛物线的定义,可知,于是问题转化为求的最小值.由平面几何知识知,当F,P,A三点共线时,取得最小值,最小值为,即的最小值为.(2)把点B的横坐标代入中,得,因为,所以点B在抛物线的内部.过B作垂直准线于点Q,交抛物线于点(如图所示).由抛物线的定义,可知,则,所以的最小值为4.【点睛】本题考查了抛物线的定义,理解定义是解题的关键,属于基础题.22、;【解析】选①,由数列为常数列可得,由此可求,根据任意相邻两项均不相等可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选②由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年陕西学前师范学院单招职业技能考试题库及答案详解1套
- 2026年长沙幼儿师范高等专科学校单招职业技能考试题库及完整答案详解1套
- 2026年驻马店职业技术学院单招职业适应性考试题库及参考答案详解1套
- 2026年宁波工程学院单招职业技能测试题库及参考答案详解
- 2026年西南交通大学希望学院单招职业倾向性考试题库及答案详解一套
- 2026年陕西工业职业技术学院单招职业适应性考试题库及答案详解一套
- 2026年安庆医药高等专科学校单招职业技能测试题库及参考答案详解
- 2026年安徽黄梅戏艺术职业学院单招职业适应性考试题库及参考答案详解一套
- 2026年北京北大方正软件职业技术学院单招职业适应性考试题库及参考答案详解1套
- 2026年浙江省丽水市单招职业适应性考试题库及完整答案详解1套
- 酒驾恢复合同范本
- 销售合同审批流程(附流程表单)
- 2025年中国铁路郑州局集团有限公司招聘本科及以上学历毕业生614人(一)(公共基础知识)综合能力测试题附答案解析
- 2025陕西陕煤澄合矿业有限公司招聘570人(公共基础知识)综合能力测试题附答案解析
- 3+《实践是检验真理的唯一标准》课件++2025-2026学年统编版高二语文选择性必修中册
- 社保局笔试题目及答案
- 2026届陕西省高三上学期适应性检测(一模)英语试卷
- 甘肃省兰州新区2024-2025学年六年级上学期期末考试数学试题
- 2025年酒店工程部年终总结样本(四篇)
- 北京市顺义区2024-2025学年八年级上学期期末生物试题
- 公交车站设施维护管理方案
评论
0/150
提交评论