版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨师范大学附中2026届高二数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,Q是圆上的动点,则线段长的最小值为()A.3 B.4C.5 D.62.已如双曲线(,)的左、右焦点分别为,,过的直线交双曲线的右支于A,B两点,若,且,则该双曲线的离心率为()A. B.C. D.3.不等式的一个必要不充分条件是()A. B.C. D.4.圆与圆的位置关系是()A.内含 B.相交C.外切 D.外离5.设,,,…,,,则()A. B.C. D.6.已知直线平分圆C:,则最小值为()A.3 B.C. D.7.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.8.是等差数列,且,,则的值()A. B.C. D.9.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.310.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A. B.C. D.11.若点P是曲线上任意一点,则点P到直线的最小距离为()A.0 B.C. D.12.如图,是边长为4的等边三角形的中位线,将沿折起,使得点A与P重合,平面平面,则四棱锥外接球的表面积是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左、右顶点分别为A,B,椭圆C的左、右焦点分别为F1,F2,点为椭圆C的下顶点,直线MA与MB的斜率之积为.(1)求椭圆C的方程;(2)设点P,Q为椭圆C上位于x轴下方的两点,且,求四边形面积的最大值.14.若直线与直线平行,且原点到直线的距离为,则直线的方程为____________.15.已知函数,则曲线在点处的切线方程为______16.已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,为两曲线的一个公共点,且(为坐标原点).若,则的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点在第一象限且为抛物线上一点,点在点右侧,且△恰为等边三角形(1)求抛物线的方程;(2)若直线与交于两点,向量的夹角为(其中为坐标原点),求实数的取值范围.18.(12分)设命题,,命题,.若p、q都为真命题,求实数m的取值范围.19.(12分)“绿水青山就是金山银山”,中国一直践行创新、协调、绿色、开放、共享的发展理念,着力促进经济实现高质量发展,决心走绿色、低碳、可持续发展之路.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向工业部表示,到2026届我国新能源汽车销量占总销量将达20%以上.2021年,某集团以20亿元收购某品牌新能源汽车制造企业,并计划投资30亿元来发展该品牌.2021年该品牌汽车的销售量为10万辆,每辆车的平均销售利润为3000元.据专家预测,以后每年销售量比上一年增加10万辆,每辆车的平均销售利润比上一年减少10%(1)若把2021年看作第一年,则第n年的销售利润为多少亿元?(2)到2027年年底,该集团能否通过该品牌汽车实现盈利?(实现盈利即销售利润超过总投资,参考数据:,,)20.(12分)已知抛物线:上的点到其准线的距离为5.(1)求抛物线的方程;(2)已知为原点,点在抛物线上,若的面积为6,求点的坐标.21.(12分)已知函数,其中(1)当时,求函数的单调区间;(2)①若恒成立,求的最小值;②证明:,其中.22.(10分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据圆的几何性质转化为圆心与点的距离加上半径即可得解.【详解】圆的圆心为,半径为,所以,圆上点在线段上时,,故选:A2、A【解析】先作辅助线,设出边长,结合题干条件得到,,利用勾股定理得到关于的等量关系,求出离心率.【详解】连接,设,则根据可知,,因为,由勾股定理得:,由双曲线定义可知:,,解得:,,从而,解得:,所以,,由勾股定理得:,从而,即该双曲线的离心率为.故选:A3、B【解析】解不等式,由此判断必要不充分条件.【详解】,解得,所以不等式的一个必要不充分条件是.故选:B4、C【解析】分别求出两圆的圆心、半径,再求出两圆的圆心距即可判断作答.【详解】圆的圆心,半径,圆,即的圆心,半径,则,即有,所以圆与圆外切.故选:C5、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B6、D【解析】根据直线过圆心求得,再利用基本不等式求和的最小值即可.【详解】根据题意,直线过点,即,则,当且仅当,即时取得最小值.故选:D.7、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来8、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B9、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.10、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得11、D【解析】由导数的几何意义求得曲线上与直线平行的切线方程的切线坐标,求出切点到直线的距离即为所求最小距离【详解】点是曲线上的任意一点,设,令,解得1或(舍去),,∴曲线上与直线平行的切线的切点为,点到直线的最小距离.故选:D.12、A【解析】分别取的中点,易得,则点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,设外接球的半径为,,利用勾股定理求得半径,从而可得出答案.【详解】解:分别取的中点,在等边三角形中,,是中位线,则都是等边三角形,所以,所以点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,由为的中点,所以,因为平面平面,且平面平面,平面,所以平面,则,设外接球半径为,,,则,,所以,解得,所以,所以四棱锥外接球的表面积是.故选:A.第II卷二、填空题:本题共4小题,每小题5分,共20分。13、(1)(2)【解析】(1)由斜率之积求得,再由已知条件得,从而得椭圆方程;(2)延长QF2交椭圆于N点,连接,,设直线,,.直线方程代入椭圆方程,应用韦达定理得,结合不等式的性质、函数的单调性可得的范围,再计算出四边形面积得结论【小问1详解】由题知:,,,又,∴椭圆.【小问2详解】延长QF2交椭圆于N点,连接,,如下图所示:,∴设直线,,.由,得,,,.,由勾形函数的单调性得,根据对称性得:,且,,∴四边形面积的最大值为.14、【解析】可设直线的方程为,利用点到直线的距离公式求得,即可得解.【详解】可设直线的方程为,即,则原点到直线的距离为,解得,所以直线的方程为.故答案为:.15、【解析】先求出,求出导函数及,进而求出切线方程.【详解】∵,∴,又,∴在处的切线方程为,即故答案为:16、【解析】设出半焦距c,用表示出椭圆的长半轴长、双曲线的实半轴长,由可得为直角三角形,由此建立关系即可计算作答,【详解】设椭圆的长半轴长为,双曲线的实半轴长为,它们的半焦距为c,于是得,,由椭圆及双曲线的对称性知,不妨令焦点和在x轴上,点P在y轴右侧,由椭圆及双曲线定义得:,解得,,因,即,而O是线段的中点,因此有,则有,即,整理得:,从而有,即有,又,则有,即,解得,所以的取值范围是.故答案为:【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得值,根据离心率的定义求解离心率;②齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据△恰为等边三角形由题意知:得到,再利用抛物线的定义求解;(2)联立,结合韦达定理,根据的夹角为,由求解.【小问1详解】解:由题意知:,由抛物线的定义知:,由,解得,所以抛物线方程为;【小问2详解】设,由,得,则,,则,,因为向量的夹角为,所以,,则,且,所以,解得,所以实数的取值范围.18、【解析】先求出命题为真时,的取值范围,再取交集可得答案.【详解】若命题,为真命题,则,解得;若命题,为真命题,则命题,为假命题,即方程无实数根,因此,,解得.又p、q都为真命题,所以实数m的取值范围是.【点睛】本题考查全称命题与特称命题的真假求参数值、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.19、(1)亿元(2)该集团能通过该品牌汽车实现盈利【解析】(1)由题意可求得第n年的销售量,第n年每辆车的平均销售利润,从而可求出第n年的销售利润,(2)利用错位相减法求出到2027年年底销售利润总和,再与总投资额比较即可【小问1详解】设第n年的销售量为万辆,则该汽车的年销售量构成首项为10,公差为10的等差数列,所以,设第n年每辆车的平均销售利润为元,则每辆汽车的平均销售利润构成首项为3000,公比为0.9的等比数列,所以,记第n年的销售利润为,则万元;即第n年的销售利润为亿元【小问2详解】到2027年年底,设销售利润总和为S亿元,则①,②,①﹣②得亿元,而总投资为亿元,因为,则到2027年年底,该集团能通过该品牌汽车实现盈利20、(1)(2)或【解析】(1)结合抛物线的定义求得,由此求得抛物线的方程.(2)设,根据三角形的面积列方程,求得的值,进而求得点的坐标.【小问1详解】由抛物线的方程可得其准线方程,依抛物线的性质得,解得.∴抛物线的方程为.【小问2详解】将代入,得.所以,直线的方程为,即.设,则点到直线的距离,又,由题意得,解得或.∴点的坐标是或.21、(1)单调递增区间为,单调递减区间为(2)①1;②证明见解析【解析】(1)求出函数的导数,在定义域内,解关于导函数的不等式,求出函数的单调区间即可;(2)①分离参数得,令,利用函数的单调性求出的最大值即可;②由①知:,时取“=”,令,即,最后累加即可.【小问1详解】由已知条件得,其中的定义域为,则,当时,,当时,,综上所述可知:的单调递增区间为,单调递减区间为;【小问2详解】①由恒成立,即恒成立,令,则,当时,,当时,,∴在上单调递增,上单调递减,∴,∴的最小值为1.②由①知:,时取“=”,令,得,∴,当时,.22、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年重庆海联职业技术学院单招职业适应性测试题库及答案详解1套
- 2026年郑州工业应用技术学院单招职业技能测试题库及参考答案详解
- 2026年资阳环境科技职业学院单招职业倾向性考试题库及答案详解一套
- 2026年江汉艺术职业学院单招职业倾向性考试题库参考答案详解
- 2026年广东省茂名市单招职业适应性考试题库及参考答案详解1套
- 事业编法律面试题及答案
- 巴斯夫安全员面试题及答案
- 村庄之间集体土地置换协议书范本
- 2025年北京市上地实验学校招聘备考题库及参考答案详解一套
- 2025护士年终考核个人总结(2篇)
- 科睿唯安 2025-年最值得关注的公司:蛋白质降解剂-使针对“不可成药”靶点的精准干预成为可能
- 民航招飞pat测试题目及答案
- 2025年Unity3D交互设计冲刺模拟专项卷
- 2026年元旦校长致辞:凯歌高奏辞旧岁欢声笑语迎新年
- 中孕引产护理查房
- 食育课三明治课件
- DB3305∕T 280-2023 湖州黄茶加工技术规程
- 病房结核应急预案
- 2026考研政治模拟预测卷及答案
- 福建省龙岩市龙岩北附2026届化学高一第一学期期末综合测试试题含解析
- 2025-2026学年八年级数学上册人教版(2024)第17章 因式分解 单元测试·基础卷
评论
0/150
提交评论