版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、解答题1.如图,在平面直角坐标系中,点,,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,,连接交y轴于点C,交x轴于点D.(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;(2)求四边形的面积;(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由.2.如图,已知,是的平分线.(1)若平分,求的度数;(2)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围.3.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.(1)若点,,都在点的右侧.①求的度数;②若,求的度数.(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.4.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EFAB,则有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).5.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数6.如图1,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.7.先阅读然后解答提出的问题:设a、b是有理数,且满足,求ba的值.解:由题意得,因为a、b都是有理数,所以a﹣3,b+2也是有理数,由于是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.问题:设x、y都是有理数,且满足,求x+y的值.8.下列等式:,,,将以上三个等式两边分别相加得:.(1)观察发现:__________.(2)初步应用:利用(1)的结论,解决以下问题“①把拆成两个分子为1的正的真分数之差,即;②把拆成两个分子为1的正的真分数之和,即;(3)定义“”是一种新的运算,若,,,求的值.9.请观察下列等式,找出规律并回答以下问题.,,,,……(1)按照这个规律写下去,第5个等式是:______;第n个等式是:______.(2)①计算:.②若a为最小的正整数,,求:.10.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,现已知a1=,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…(1)求a2,a3,a4的值;(2)根据(1)的计算结果,请猜想并写出a2016•a2017•a2018的值;(3)计算:a33+a66+a99+…+a9999的值.11.定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为例如:,对调个位数字与十位数字后得到新两位数是,新两位数与原两位数的和为,和与的商为,所以根据以上定义,完成下列问题:(1)填空:①下列两位数:,,中,“奇异数”有.②计算:..(2)如果一个“奇异数”的十位数字是,个位数字是,且请求出这个“奇异数”(3)如果一个“奇异数”的十位数字是,个位数字是,且满足,请直接写出满足条件的的值.12.三个自然数x、y、z组成一个有序数组,如果满足,那么我们称数组为“蹦蹦数组”.例如:数组中,故是“蹦蹦数组”;数组中,故不是“蹦蹦数组”.(1)分别判断数组和是否为“蹦蹦数组”;(2)s和t均是三位数的自然数,其中s的十位数字是3,个位数字是2,t的百位数字是2,十位数字是5,且.是否存在一个整数b,使得数组为“蹦蹦数组”.若存在,求出b的值;若不存在,请说明理由;(3)有一个三位数的自然数,百位数字是1,十位数字是p,个位数字是q,若数组为“蹦蹦数组”,且该三位数是7的倍数,求这个三位数.13.如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且△OAB的面积为6.(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,△BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及△BPQ的面积.14.已知,.点在上,点在上.(1)如图1中,、、的数量关系为:;(不需要证明);如图2中,、、的数量关系为:;(不需要证明)(2)如图3中,平分,平分,且,求的度数;(3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数.15.如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且.(1)(),()(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数:(注:三角形三个内角的和为)(3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.16.如果x是一个有理数,我们定义x表示不小于x的最小整数.如3.24,2.62,55,66.由定义可知,任意一个有理数都能写成xxb的形式(0≤b<1).(1)直接写出x与x,x1的大小关系;提示1:用“不完全归纳法”推导x与x,x1的大小关系;提示2:用“代数推理”的方法推导x与x,x1的大小关系.(2)根据(1)中的结论解决下列问题:①直接写出满足3m74的m取值范围;②直接写出方程3.5n22n1的解..17.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).18.(了解概念)在平面直角坐标系中,若,式子的值就叫做线段的“勾股距”,记作.同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”.(理解运用)在平面直角坐标系中,.(1)线段的“勾股距”;(2)若点在第三象限,且,求并判断是否为“等距三角形”﹔(拓展提升)(3)若点在轴上,是“等距三角形”,请直接写出的取值范围.19.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大990.若设较大的两位数为x,较小的两位数为y,回答下列问题:(1)可得到下列哪一个方程组?A.B.C.D.(2)解所确定的方程组,求这两个两位数.20.判断下面方程组的解法是否正确,如果全部正确,判断即可;如果有错误,请写出正确的解题过程.解:①×2-②×3,得,解得,把代入方程①,得,解得.∴原方程组的解为21.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?22.某企业用规格是170cm×40cm的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材张,乙型板材张;②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?23.如图,已知,,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.24.对于不为0的一位数和一个两位数,将数放置于两位数之前,或者将数放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为.例如:当,时,可以得到168,618.较大三位数减去较小三位数的差为,而,所以.(1)计算:.(2)若是一位数,是两位数,的十位数字为(,为自然数),个位数字为8,当时,求出所有可能的,的值.25.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x的代数式,当1x1时,代数式在x1时有最大值,最大值为1;在x0时有最小值,最小值为0,此时最值1,0均在1x1这个范围内,则称代数式是1x1的“湘一代数式”.(1)若关于的代数式,当时,取得的最大值为,最小值为,所以代数式(填“是”或“不是”)的“湘一代数式”.(2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值.(3)若关于的代数式是的“湘一代数式”,求m的取值范围.26.某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B每吨1000元.由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存.经市场调查获得以下信息:①将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程150千米;②两种运输方式的运输单价不同(单价:每吨每千米所收的运输费);③公路运输时,每吨每千米还需加收1元的燃油附加费;④运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元.(1)加工厂购进A、B两种原料各多少吨?(2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务.加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输总花费较少?请说明理由.27.阅读理解:例1.解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.参考阅读材料,解答下列问题:(1)方程|x﹣2|=3的解为;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围.28.定义:如果一个两位数a的十位数字为m,个位数字为n,且、、,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为.例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以.根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________;②计算:________;________;(m、n分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c的十位数字是,个位数字是,且,请求出“互异数”b和c;(3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字是3,且满足,请直接写出满足条件的所有x的值________;(4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围________.29.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表:数量范围(千克)不超过50的部分50以上但不超过150的部分150以上的部分价格(元)零售价的95%零售价的85%零售价的75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x千克苹果(),问师傅应怎样选择两家批发商所花费用更少?30.如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得S△POB=S△ABC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)向左平移4个单位,再向下平移6个单位,,;(2)24;(3)见解析【分析】(1)利用平移变换的性质解决问题即可.(2)利用分割法确定四边形的面积即可.(3)分两种情形:点在点的上方,点在点的下方,分别求解即可.【详解】解:(1)点,,又将线段进行平移,使点刚好落在轴的负半轴上,点刚好落在轴的负半轴上,线段是由线段向左平移4个单位,再向下平移6个单位得到,,.(2).(3)连接.,,的中点坐标为在轴上,.,轴,同法可证,,,,同法可证,,,,当点在点的下方时,,,,,当点在点的上方时,.【点睛】本题考查坐标与图形变化—平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.2.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,,根据平行线的性质及平角的定义即可得解.【详解】解(1),分别平分和,,,,;(2),,即,,是的平分线,,,又,,又在的内部,平分;(3)如图,不发生变化,,过,分别作,,则有,,,,,,,,,,,,不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.3.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.4.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度数为180°﹣.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.5.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数.【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.7.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:∵,∴,∴=0,=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.8.(1);;(2)①;②;(3).【分析】(1)利用材料中的“拆项法”解答即可;(2)①先变形为,再利用(1)中的规律解题;②先变形为,再逆用分数的加法法则即可分解;(3)按照定义“”法则表示出,再利用(1)中的规律解题即可.【详解】解:(1)观察发现:,===;故答案是:;.(2)初步应用:①=;②;故答案是:;.(3)由定义可知:====.故的值为.【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.9.(1),;(2)①;②【分析】(1)根据规律可得第5个算式;根据规律可得第n个算式;(2)①根据运算规律可得结果.②利用非负数的性质求出与的值,代入原式后拆项变形,抵消即可得到结果.【详解】(1)根据规律得:第5个等式是,第n个等式是;(2)①,,,;②为最小的正整数,,,,原式,,,,.【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.10.(1)a2=2,a3=-1,a4=(2)a2016•a2017•a2018=-1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=代入中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=,代入,得;将a2=2,代入,得;将a3=-1,代入,得.(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=,a2018=2所以,a2016•a2017•a2018=(-1)××2=-1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.11.(1)①,②,;(2);(3)【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根据题意可列出等式,可求出x、y的值,即可求的值.【详解】解:(1)①∵对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有∵∴∴∵x、y为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①,②,;(2);(3)【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.12.(1)(437,307,177)是“蹦蹦数组”,(601,473,346)不是“蹦蹦数组”;(2)存在,数组为(532,395,258);(3)这个三位数是147.【分析】(1)由“蹦蹦数组”的定义进行验证即可;(2)设s为,t为,则,先后求得n、s的值,根据“蹦蹦数组”的定义即可求解;(3)设这个数为,则,由和都是0到9的正整数,列举法即可得出这个三位数.【详解】解:(1)数组(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦数组”;数组(601,473,346)中,601-473=128,473-346=127,∴601-473473-346,故(601,473,346)不是“蹦蹦数组”;(2)设s为,t为,则,∵m、n为整数,∴,则t为258,∴s为532,而,则b为532-137=395,验算:532-395=395-258=137,故数组为(532,395,258);(3)根据题意,设这个数为,则,∴,而和都是0到9的正整数,讨论:p12345q13579111123135147159而是7的倍数的三位数只有147,且1-4=4-7=-3,数组(1,4,7)为“蹦蹦数组”,故这个三位数是147.【点睛】本题是一道新定义题目,解决的关键是能够根据定义,通过列举法找到合适的数,进而求解.13.(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面积公式构建方程求出b的值即可解决问题;(2)分两种情形分别求解:当点P在线段OB上时,当点P在线段OB的延长线上时;(3)过点K作KH⊥OA用H.根据S△BPK+S△AKH=S△AOB-S长方形OPKH,构建方程求出t,即可解决问题;【详解】解:(1)∵,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴•4•OB=6,∴OB=3,∴B(0,3).(2)当点P在线段OB上时,S=•PQ•PB=×4×(3-t)=-2t+6.当点P在线段OB的延长线上时,S=•PQ•PB=×4×(t-3)=2t-6.综上所述,S=.(3)过点K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S长方形OPKH,∴PK•BP+AH•KH=6-PK•OP,∴××(3-t)+(4-)•t=6-•t,解得t=1,∴S△BPQ=-2t+6=4.【点睛】本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.14.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解】解:(1)过E作EHAB,如图1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN−∠END.如图2,过F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF−∠FND=180°,∴2∠BME+2∠END+∠BMF−∠FND=180°,即2∠BMF+∠FND+∠BMF−∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.15.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不变,∠N=45°【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;(2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数;(3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=∠BMD+∠OAD,据此即可得到结论.【详解】(1)由,可得和,解得∴A的坐标是(-2,0)、B的坐标是(0,3);(2)如图,作DM∥x轴根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不变,∠N=45°理由:如图,过D作DE∥BC,过N作NF∥BC.∵BC∥x轴,∴DE∥BC∥x轴,NF∥BC∥x轴,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【点睛】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.也考查了三角形内角和定理和三角形外角性质.16.(1);(2)①;②或.【分析】(1)提示1:先列出4个x的值,分别得出与的大小关系,再利用“不完全归纳法”即可得;提示2:先根据“”得出,再根据“”即可得;(2)①根据(1)的结论得出,据此解不等式组即可得;②先根据(1)的结论得出,再解不等式组求出n的取值范围,从而可得的取值范围,然后根据“为整数”可得出方程,由此解方程即可得.【详解】(1)提示1:当时,,则当时,,则当时,,则当时,,则由“不完全归纳法”可得:;提示2:,且;(2)①由(1)的结论得:解得;②由(1)的结论得:解得为整数则或解得或.【点睛】本题考查了一元一次不等式组的应用、解一元一次方程等知识点,理解新定义,正确求解不等式组是解题关键.17.(1)①E(3,﹣2)②见解析;③,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.18.(1)5;(2)dAC=11,△ABC不是为“等距三角形”;(3)m≥4【分析】(1)根据两点之间的直角距离的定义,结合O、P两点的坐标即可得出结论;(2)根据两点之间的直角距离的定义,用含x、y的代数式表示出来d(O,Q)=4,结合点Q(x,y)在第一象限,即可得出结论;(3)由点N在直线y=x+3上,设出点N的坐标为(m,m+3),通过寻找d(M,N)的最小值,得出点M(2,-1)到直线y=x+3的直角距离.【详解】解:(1)由“勾股距”的定义知:dOA=|2-0|+|3-0|=2+3=5,故答案为:5;(2)∵dAB=|4-2|+|2-3|=2+1=3,∴2dAB=6,∵点C在第三象限,∴m<0,n<0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),∵dOC=2dAB,∴-(m+n)=6,即m+n=-6,∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,∵5+11≠12,11+12≠5,12+5≠11,∴△ABC不是为“等距三角形”;(3)点C在x轴上时,点C(m,0),则dAC=|2-m|+3,dBC=|4-m|+2,①当m<2时,dAC=2-m+3=5-m,dBC=4-m+2=6-m,若△ABC是“等距三角形”,∴5-m+6-m=11-2m=3,解得:m=4(不合题意),又∵5-m+3=8-m≠6-m,②当2≤m<4时,dAC=m-2+3=m+1,dBC=4-m+2=6-m,若△ABC是“等距三角形”,则m+1+6-m=7≠3,6-m+3=m+1,解得:m=4(不和题意),③当m≥4时,dAC=m+1,dBC=m-2,若△ABC是“等距三角形”,则m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,∴m≥4时,△ABC是“等距三角形”,综上所述:△ABC是“等距三角形”时,m的取值范围为:m≥4.【点睛】本题考查坐标与图形的性质,关键是对“勾股距”和“等距三角形”新概念的理解,运用“勾股距”和“等距三角形”解题.19.(1)C;(2)39和29【分析】(1)首先设较大的两位数为,较小的两位数为,根据题意可得等量关系:①两个两位数的和为68,②比大990,根据等量关系列出方程组;(2)利用加减消元法解方程组即可.【详解】解:(1)解:设较大的两位数为,较小的两位数为,根据题意,得故选:C;(2)化简得,①+②,得,即.①-②,得,即.所以这两个数分别是39和29.【点睛】此题主要考查了由实际问题抽象出二元一次方程组和解二元一次方程组,关键是弄清题目意思,表示出“较小的两位数写在较大的两位数的右边,得到一个四位数为”,把较小的两位数写在较大的两位数的左边,得到另一个四位数为.20.【分析】用加减消元法解二元一次方程组,在两个方程作差时符号出错了,正确为①②,得,再求解即可.【详解】解:上述解法不正确.正确解题过程如下:①②,得,解得,把代入方程①,得,解得.原方程组的解为.【点睛】本题考查了二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组.21.快车每秒行米,慢车每秒行米.【分析】设快车每秒行米,慢车每秒行米,根据若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,列出方程组,解方程组即可求得.【详解】设快车每秒行米,慢车每秒行米,根据题意得,解得答:快车每秒行米,慢车每秒行米.【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.22.(1)60,40;(2)①甲:85;乙50;②27【分析】(1)由图示列出关于a、b的二元一次方程组求解.(2)①根据已知和图示计算出两种裁法共产生甲型板材和乙型板材的张数;②根据竖式与横式礼品盒所需要的甲、乙两种型号板材的张数列出关于m、n的二元一次方程,求解,即可得出结论.【详解】解:(1)依题意,得:解得:a=60b=40答:a、b的值分别为60,40.(2)①一共可裁剪出甲型板材40×2+5=85(张)乙型板材40+5×2=50(张).故答案是:85,50;②设可做成m个竖式无盖装饰盒,n个横式无盖装饰盒.依题意得:,解得:m=4,n=23所以m+n=27,故答案为27个【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,根据图示列出算式以及关于m、n的二元一次方程.23.(1),;(2);(3)【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由列方程组,求出点C坐标,进而由△ACD面积求出D点坐标.(3)由平行线间距离相等得到,继而求出E点坐标,同理求出F点坐标,再由GE=12求出G点坐标,根据求出PG的长即可求P点坐标.【详解】解:(1),∴,,,,,,,(2)由∴,,,如图1,连,作轴,轴,,即,,,而,,,,(3)如图2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.24.(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三种情形讨论计算.【详解】(1)当,时,可以得到217,127.较大三位数减去较小三位数的差为,而,∴.(2)当,时,可以得a50,5a0.三位数分别为100a+50,500+10a,当1≤a<5时,(500+10a)-(100a+50)=450-90a,而,∴=,∴=;当a=5时,(500+10a)-(100a+50)=0,而,∴=0,∴=0;当5<a≤9时,(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;当,时,可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;当1≤a<5时,5-a+27-3x=8,∴a+3x=24,∴当a=1时,x=(舍去),当a=2时,x=(舍去),当a=3时,x=7,当a=4时,x=(舍去),∴a=3,b=78;当a=5时,则27-3x=8,∴x=(舍去),当5<a≤9时,则a-5+27-3x=8,∴3x-a=14,∴当a=6时,x=(舍去),当a=7时,x=7,当a=8时,x=(舍去),当a=9时,x=(舍去),∴a=7,b=78;综上所述,a=3,b=78或a=7,b=78.【点睛】本题考查了新定义问题和二元一次方程的整数解,准确理解新定义的意义,灵活运用分类思想和枚举法是解题的关键.25.(1)是.(2)a的最大值为,最小值为;(3)【分析】(1)先求解当时,的最大值与最小值,再根据定义判断即可;(2)当时,得分<,分别求解在内时的最大值与最小值,再列不等式组即可得到答案;(3)当时,分,两种情况分别求解的最大值与最小值,再列不等式(组)求解即可.【详解】解:(1)当时,取最大值,当时,取最小值所以代数式是的“湘一代数式”.故答案为:是.(2)∵,∴0≤|x|≤2,∴①当a≥0时,x=0时,有最大值为,x=2或-2时,有最小值为所以可得不等式组,由①得:由②得:所以:②a<0时,x=0时,有最小值为,x=2或-2时,的有大值为所以可得不等式组,由①得:由②得:所以:<,综上①②可得,所以a的最大值为,最小值为.(3)是的“湘一代数式”,当时,的最大值是最小值是当时,当时,取最小值当时,取最大值,解得:综上:的取值范围是:【点睛】本题考查的是新定义情境下的不等式或不等式组的应用,理解定义列不等式(组)是解题的关键.26.(1)加工厂购进A种原料25吨,B种原料15吨;(2)当m﹣n<0,即a<b时,方案一运输总花费少,当m﹣n=0,即a=b时,两种运输总花费相等,当m﹣n>0,即a>b时,方案二运输总花费少,见解析【分析】(1)设加工厂购进种原料吨,种原料吨,由题意:某加工厂用52500元购进、两种原料共40吨,其中原料每吨1500元,原料每吨1000元.列方程组,解方程组即可;(2)设公路运输的单价为元,铁路运输的单价为元,有两种方案,方案一:原料公路运输,原料铁路运输;方案二:原料铁路运输,原料公路运输;设方案一的运输总花费为元,方案二的运输总花费为元,分别求出、,再分情况讨论即可.【详解】解:(1)设加工厂购进种原料吨,种原料吨,由题意得:,解得:,答:加工厂购进种原料25吨,种原料15吨;(2)设公路运输的单价为元,铁路运输的单价为元,根据题意,有两种方案,方案一:原料公路运输,原料铁路运输;方案二:原料铁路运输,原料公路运输;设方案一的运输总花费为元,方案二的运输总花费为元,则,,,当,即时,方案一运输总花费少,即原料公路运输,原料铁路运输,总花费少;当,即时,两种运输总花费相等;当,即时,方案二运输总花费少,即原料铁路运输,原料公路运输,总花费少.【点睛】本题考查了一元一次不等式的应用、二元一次方程组的应用等知识;解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)找出数量关系,列出一元一次不等式或一元一次方程.27.(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在数轴上到2对应的点的距离等于3的点对应的数求解即可;(2)先求出|x-2|=3的解,再求|x-2|≤3的解集即可;(3)先在数轴上找出|x-4|+|x+2|=8的解,即可得出不等式|x-4|+|x+2|>8的解集;(4)原问题转化为:a大于或等于|x+2|+|x-4|最大值,进行分类讨论,即可解答.【详解】解:(1)∵在数轴上到2对应的点的距离等于3的点对应的数为-1或5,∴方程|x-2|=3的解为x=-1或x=5;(2)在数轴上找出|x-2|=1的解.∵在数轴上到2对应的点的距离等于1的点对应的数为1或3,∴方程|x-2|=1的解为x=1或x=3,∴不等式|x-2|≤1的解集为1≤x≤3.(3)在数轴上找出|x-4|+|x+2|=8的解.由绝对值的几何意义知,该方程就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值.∵在数轴上4和-2对应的点的距离为6,∴满足方程的x对应的点在4的右边或-2的左边.若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3,∴方程|x-4|+|x+2|=8的解是x=5或x=-3,∴不等式|x-4|+|x+2|>8的解集为x>5或x<-3.(4)原问题转化为:a大于或等于|x+2|+|x-4|最大值.当x≥4时,|x+2|+|x-4|=x+2+x-4=2x-2,当-2<x<4,|x+2|+|x-4|=x+2-x+4=6,当x≤-2时,|x+2|+|x-4|=-x-2-x+4=-2x+2,即|x+2|+|x-4|的最大值为6.故a≥6.【点睛】本题主要考查了绝对值,方程及不等式的知识,是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.28.(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W(b)=7,W(c)=13,列出二元一次方程组,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年贵州护理职业技术学院单招职业技能测试题库含答案详解
- 2026年伊犁职业技术学院单招职业适应性测试题库及答案详解1套
- 2026年山西艺术职业学院单招综合素质考试题库及答案详解1套
- 2026年广东机电职业技术学院单招综合素质考试题库参考答案详解
- 2026年四川工商职业技术学院单招职业技能测试题库及完整答案详解1套
- 2026年浙江万里学院单招职业倾向性测试题库带答案详解
- 2026年兰州现代职业学院单招职业适应性测试题库及答案详解1套
- 2026年吉林科技职业技术学院单招职业倾向性测试题库参考答案详解
- 2026年广西演艺职业学院单招职业技能考试题库及参考答案详解一套
- 2026年湖南九嶷职业技术学院单招职业适应性测试题库含答案详解
- 2025年医院人力资源管理测试题(附答案)
- 2025胰岛素皮下注射团体标准解读
- T-CBJ 2206-2024 白酒企业温室气体排放核算方法与报告要求
- 预防职务犯罪法律讲座
- 云南省昆明市中华小学2025年数学四年级第一学期期末检测试题含解析
- 科创基地管理办法
- 代付工程款三方协议(2025版)
- 卡西欧电子琴CTK-496(700)中文说明书
- DB64-T 1853-2022 畜禽粪便封闭式强制曝气堆肥技术规程
- 气管切开的湿化管理及护理
- 密闭空间机器人巡检
评论
0/150
提交评论